The randomized measurement toolbox

被引:195
作者
Elben, Andreas [1 ,2 ,3 ,4 ]
Flammia, Steven T. [1 ,5 ]
Huang, Hsin-Yuan [1 ,6 ]
Kueng, Richard [7 ]
Preskill, John [1 ,2 ,5 ,6 ]
Vermersch, Benoit [3 ,4 ,8 ]
Zoller, Peter [3 ,4 ]
机构
[1] Caltech, Inst Quantum Informat & Matter, Pasadena, CA USA
[2] Caltech, Walter Burke Inst Theoret Phys, Pasadena, CA USA
[3] Univ Innsbruck, Inst Theoret Phys, Innsbruck, Austria
[4] Austrian Acad Sci, Inst Quantum Opt & Quantum Informat, Innsbruck, Austria
[5] AWS Ctr Quantum Comp, Pasadena, CA USA
[6] Caltech, Dept Comp & Math Sci, Pasadena, CA USA
[7] Johannes Kepler Univ Linz, Inst Integrated Circuits, Linz, Austria
[8] Univ Grenoble Alpes, CNRS, LPMMC, Grenoble, France
基金
美国国家科学基金会;
关键词
QUANTUM SIMULATIONS; TOMOGRAPHY; SUPREMACY; STATES;
D O I
10.1038/s42254-022-00535-2
中图分类号
O59 [应用物理学];
学科分类号
摘要
Programmable quantum simulators and quantum computers are opening unprecedented opportunities for exploring and exploiting the properties of highly entangled complex quantum systems. The complexity of large quantum systems is the source of computational power but also makes them difficult to control precisely or characterize accurately using measured classical data. We review protocols for probing the properties of complex many-qubit systems using measurement schemes that are practical using today's quantum platforms. In these protocols, a quantum state is repeatedly prepared and measured in a randomly chosen basis; then a classical computer processes the measurement outcomes to estimate the desired property. The randomization of the measurement procedure has distinct advantages. For example, a single data set can be used multiple times to pursue a variety of applications, and imperfections in the measurements are mapped to a simplified noise model that can more easily be mitigated. We discuss a range of cases that have already been realized in quantum devices, including Hamiltonian simulation tasks, probes of quantum chaos, measurements of non-local order parameters, and comparison of quantum states produced in distantly separated laboratories. By providing a workable method for translating a complex quantum state into a succinct classical representation that preserves a rich variety of relevant physical properties, the randomized measurement toolbox strengthens our ability to grasp and control the quantum world.
引用
收藏
页码:9 / 24
页数:16
相关论文
共 167 条
[1]  
Carteret HA, 2017, Arxiv, DOI arXiv:1605.08751
[2]   Gentle Measurement of Quantum States and Differential Privacy [J].
Aaronson, Scott ;
Rothblum, Guy N. .
PROCEEDINGS OF THE 51ST ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING (STOC '19), 2019, :322-333
[3]   Shadow Tomography of Quantum States [J].
Aaronson, Scott .
STOC'18: PROCEEDINGS OF THE 50TH ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING, 2018, :325-338
[4]   Quantum Computer Systems for Scientific Discovery [J].
Alexeev, Yuri ;
Bacon, Dave ;
Brown, Kenneth R. ;
Calderbank, Robert ;
Carr, Lincoln D. ;
Chong, Frederic T. ;
DeMarco, Brian ;
Englund, Dirk ;
Farhi, Edward ;
Fefferman, Bill ;
Gorshkov, Alexey, V ;
Houck, Andrew ;
Kim, Jungsang ;
Kimmel, Shelby ;
Lange, Michael ;
Lloyd, Seth ;
Lukin, Mikhail D. ;
Maslov, Dmitri ;
Maunz, Peter ;
Monroe, Christopher ;
Preskill, John ;
Roetteler, Martin ;
Savage, Martin J. ;
Thompson, Jeff .
PRX QUANTUM, 2021, 2 (01)
[5]   Quantum Simulators: Architectures and Opportunities [J].
Altman, Ehud ;
Brown, Kenneth R. ;
Carleo, Giuseppe ;
Carr, Lincoln D. ;
Demler, Eugene ;
Chin, Cheng ;
DeMarco, Brian ;
Economou, Sophia E. ;
Eriksson, Mark A. ;
Fu, Kai-Mei C. ;
Greiner, Markus ;
Hazzard, Kaden R. A. ;
Hulet, Randall G. ;
Kollar, Alicia J. ;
Lev, Benjamin L. ;
Lukin, Mikhail D. ;
Ma, Ruichao ;
Mi, Xiao ;
Misra, Shashank ;
Monroe, Christopher ;
Murch, Kater ;
Nazario, Zaira ;
Ni, Kang-Kuen ;
Potter, Andrew C. ;
Roushan, Pedram ;
Saffman, Mark ;
Schleier-Smith, Monika ;
Siddiqi, Irfan ;
Simmonds, Raymond ;
Singh, Meenakshi ;
Spielman, I. B. ;
Temme, Kristan ;
Weiss, David S. ;
Vuckovic, Jelena ;
Vuletic, Vladan ;
Ye, Jun ;
Zwierlein, Martin .
PRX QUANTUM, 2021, 2 (01)
[6]   Sample-efficient learning of interacting quantum systems [J].
Anshu, Anurag ;
Arunachalam, Srinivasan ;
Kuwahara, Tomotaka ;
Soleimanifar, Mehdi .
NATURE PHYSICS, 2021, 17 (08) :931-+
[7]   Quantum supremacy using a programmable superconducting processor [J].
Arute, Frank ;
Arya, Kunal ;
Babbush, Ryan ;
Bacon, Dave ;
Bardin, Joseph C. ;
Barends, Rami ;
Biswas, Rupak ;
Boixo, Sergio ;
Brandao, Fernando G. S. L. ;
Buell, David A. ;
Burkett, Brian ;
Chen, Yu ;
Chen, Zijun ;
Chiaro, Ben ;
Collins, Roberto ;
Courtney, William ;
Dunsworth, Andrew ;
Farhi, Edward ;
Foxen, Brooks ;
Fowler, Austin ;
Gidney, Craig ;
Giustina, Marissa ;
Graff, Rob ;
Guerin, Keith ;
Habegger, Steve ;
Harrigan, Matthew P. ;
Hartmann, Michael J. ;
Ho, Alan ;
Hoffmann, Markus ;
Huang, Trent ;
Humble, Travis S. ;
Isakov, Sergei V. ;
Jeffrey, Evan ;
Jiang, Zhang ;
Kafri, Dvir ;
Kechedzhi, Kostyantyn ;
Kelly, Julian ;
Klimov, Paul V. ;
Knysh, Sergey ;
Korotkov, Alexander ;
Kostritsa, Fedor ;
Landhuis, David ;
Lindmark, Mike ;
Lucero, Erik ;
Lyakh, Dmitry ;
Mandra, Salvatore ;
McClean, Jarrod R. ;
McEwen, Matthew ;
Megrant, Anthony ;
Mi, Xiao .
NATURE, 2019, 574 (7779) :505-+
[8]   Improved Quantum Data Analysis [J].
Badescu, Costin ;
O'Donnell, Ryan .
STOC '21: PROCEEDINGS OF THE 53RD ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING, 2021, :1398-1411
[9]   Learning the dynamics of open quantum systems from their steady states [J].
Bairey, Eyal ;
Guo, Chu ;
Poletti, Dario ;
Lindner, Netanel H. ;
Arad, Itai .
NEW JOURNAL OF PHYSICS, 2020, 22 (03)
[10]   Learning a Local Hamiltonian from Local Measurements [J].
Bairey, Eyal ;
Arad, Itai ;
Lindner, Netanel H. .
PHYSICAL REVIEW LETTERS, 2019, 122 (02)