From regression rank scores to robust inference for censored quantile regression

被引:2
|
作者
Sun, Yuan [1 ]
He, Xuming [1 ]
机构
[1] Univ Michigan, Dept Stat, Ann Arbor, MI 48109 USA
来源
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE | 2023年 / 51卷 / 04期
基金
美国国家科学基金会;
关键词
Bootstrap; censored data; quantile regression; rank score; SPEARMANS-RHO; KENDALLS TAU; MULTIVARIATE; EQUALITY;
D O I
10.1002/cjs.11740
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Quantile regression for right- or left-censored outcomes has attracted attention due to its ability to accommodate heterogeneity in regression analysis of survival times. Rank-based inferential methods have desirable properties for quantile regression analysis, but censored data poses challenges to the general concept of ranking. In this article, we propose a notion of censored quantile regression rank scores, which enables us to construct rank-based tests for quantile regression coefficients at a single quantile or over a quantile region. A model-based bootstrap algorithm is proposed to implement the tests. We also illustrate the advantage of focusing on a quantile region instead of a single quantile level when testing the effect of certain covariates in a quantile regression framework.
引用
收藏
页码:1126 / 1149
页数:24
相关论文
共 50 条
  • [41] Transformed linear quantile regression with censored survival data
    Miao, Rui
    Sun, Liuquan
    Tian, Guo-Liang
    STATISTICS AND ITS INTERFACE, 2016, 9 (02) : 131 - 139
  • [42] Non-parametric quantile regression with censored data
    Gannoun, A
    Saracco, J
    Yuan, A
    Bonney, GE
    SCANDINAVIAN JOURNAL OF STATISTICS, 2005, 32 (04) : 527 - 550
  • [43] LOCAL LINEAR QUANTILE REGRESSION WITH DEPENDENT CENSORED DATA
    El Ghouch, Anouar
    Van Keilegom, Ingrid
    STATISTICA SINICA, 2009, 19 (04) : 1621 - 1640
  • [44] SIMEX method for censored quantile regression with measurement error
    Mao, Guangcai
    Wei, Yi
    Liu, Yanyan
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2017, 46 (10) : 7552 - 7560
  • [45] Censored quantile regression survival models with a cure proportion
    Narisetty, Naveen
    Koenker, Roger
    JOURNAL OF ECONOMETRICS, 2022, 226 (01) : 192 - 203
  • [46] Estimation for the censored partially linear quantile regression models
    Du, Jiang
    Zhang, Zhongzhan
    Xu, Dengke
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2018, 47 (08) : 2393 - 2408
  • [47] A new lack-of-fit test for quantile regression with censored data
    Conde-Amboage, Mercedes
    Van Keilegom, Ingrid
    Gonzalez-Manteiga, Wenceslao
    SCANDINAVIAN JOURNAL OF STATISTICS, 2021, 48 (02) : 655 - 688
  • [48] Sparse estimation and inference for censored median regression
    Shows, Justin Hall
    Lu, Wenbin
    Zhang, Hao Helen
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2010, 140 (07) : 1903 - 1917
  • [49] Inference on linear quantile regression with dyadic data
    Chen, Hongqi
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2025, 239
  • [50] Causal inference by quantile regression kink designs
    Chiang, Harold D.
    Sasaki, Yuya
    JOURNAL OF ECONOMETRICS, 2019, 210 (02) : 405 - 433