From regression rank scores to robust inference for censored quantile regression

被引:2
|
作者
Sun, Yuan [1 ]
He, Xuming [1 ]
机构
[1] Univ Michigan, Dept Stat, Ann Arbor, MI 48109 USA
来源
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE | 2023年 / 51卷 / 04期
基金
美国国家科学基金会;
关键词
Bootstrap; censored data; quantile regression; rank score; SPEARMANS-RHO; KENDALLS TAU; MULTIVARIATE; EQUALITY;
D O I
10.1002/cjs.11740
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Quantile regression for right- or left-censored outcomes has attracted attention due to its ability to accommodate heterogeneity in regression analysis of survival times. Rank-based inferential methods have desirable properties for quantile regression analysis, but censored data poses challenges to the general concept of ranking. In this article, we propose a notion of censored quantile regression rank scores, which enables us to construct rank-based tests for quantile regression coefficients at a single quantile or over a quantile region. A model-based bootstrap algorithm is proposed to implement the tests. We also illustrate the advantage of focusing on a quantile region instead of a single quantile level when testing the effect of certain covariates in a quantile regression framework.
引用
收藏
页码:1126 / 1149
页数:24
相关论文
共 50 条
  • [31] An Adapted Loss Function for Censored Quantile Regression
    De Backer, Mickael
    Ghouch, Anouar El
    Van Keilegom, Ingrid
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2019, 114 (527) : 1126 - 1137
  • [32] Censored quantile regression with partially functional effects
    Qian, Jing
    Peng, Limin
    BIOMETRIKA, 2010, 97 (04) : 839 - 850
  • [33] CENSORED QUANTILE REGRESSION WITH COVARIATE MEASUREMENT ERRORS
    Ma, Yanyuan
    Yin, Guosheng
    STATISTICA SINICA, 2011, 21 (02) : 949 - 971
  • [34] Sequential estimation of censored quantile regression models
    Chen, Songnian
    JOURNAL OF ECONOMETRICS, 2018, 207 (01) : 30 - 52
  • [35] Statistical inference for nonparametric censored regression
    Mao, Guangcai
    Zhang, Jing
    STAT, 2021, 10 (01):
  • [36] Quantile inference for heteroscedastic regression models
    Chan, Ngai Hang
    Zhang, Rong-Mao
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2011, 141 (06) : 2079 - 2090
  • [37] DISTRIBUTED INFERENCE FOR QUANTILE REGRESSION PROCESSES
    Volgushev, Stanislav
    Chao, Shih-Kang
    Cheng, Guang
    ANNALS OF STATISTICS, 2019, 47 (03): : 1634 - 1662
  • [38] Smoothed quantile regression with large-scale inference
    He, Xuming
    Pan, Xiaoou
    Tan, Kean Ming
    Zhou, Wen-Xin
    JOURNAL OF ECONOMETRICS, 2023, 232 (02) : 367 - 388
  • [39] Fitting censored quantile regression by variable neighborhood search
    Rima Sheikh Rajab
    Milan Dražić
    Nenad Mladenović
    Pavle Mladenović
    Keming Yu
    Journal of Global Optimization, 2015, 63 : 481 - 500
  • [40] Fitting censored quantile regression by variable neighborhood search
    Rajab, Rima Sheikh
    Drazic, Milan
    Mladenovic, Nenad
    Mladenovic, Pavle
    Yu, Keming
    JOURNAL OF GLOBAL OPTIMIZATION, 2015, 63 (03) : 481 - 500