From regression rank scores to robust inference for censored quantile regression

被引:2
|
作者
Sun, Yuan [1 ]
He, Xuming [1 ]
机构
[1] Univ Michigan, Dept Stat, Ann Arbor, MI 48109 USA
来源
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE | 2023年 / 51卷 / 04期
基金
美国国家科学基金会;
关键词
Bootstrap; censored data; quantile regression; rank score; SPEARMANS-RHO; KENDALLS TAU; MULTIVARIATE; EQUALITY;
D O I
10.1002/cjs.11740
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Quantile regression for right- or left-censored outcomes has attracted attention due to its ability to accommodate heterogeneity in regression analysis of survival times. Rank-based inferential methods have desirable properties for quantile regression analysis, but censored data poses challenges to the general concept of ranking. In this article, we propose a notion of censored quantile regression rank scores, which enables us to construct rank-based tests for quantile regression coefficients at a single quantile or over a quantile region. A model-based bootstrap algorithm is proposed to implement the tests. We also illustrate the advantage of focusing on a quantile region instead of a single quantile level when testing the effect of certain covariates in a quantile regression framework.
引用
收藏
页码:1126 / 1149
页数:24
相关论文
empty
未找到相关数据