A balanced norm error estimation for the time-dependent reaction-diffusion problem with shift in space

被引:6
作者
Brdar, Mirjana [1 ]
Franz, Sebastian [2 ]
Ludwig, Lars [2 ]
Roos, Hans-Goerg [3 ]
机构
[1] Univ Novi Sad, Fac Technol Novi Sad, Bulevar Cara Lazara 1, Novi Sad 21000, Serbia
[2] Tech Univ Dresden, Inst Sci Comp, Dresden, Germany
[3] Tech Univ Dresden, Inst Numer Math, Dresden, Germany
关键词
Spatial shift; Singularly perturbed; Discontinuous Galerkin; Time-dependent; BOUNDARY-VALUE-PROBLEMS; SINGULAR PERTURBATION ANALYSIS; DIFFERENTIAL-DIFFERENCE EQUATIONS; FINITE-ELEMENT METHODS; NUMERICAL TREATMENT; PARABOLIC PROBLEMS; APPROXIMATION; CONVERGENCE;
D O I
10.1016/j.amc.2022.127507
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a singularly perturbed time-dependent problem with a shift term in space. On appropriately defined layer adapted meshes of Duran-and S-type we derive a-priori error estimates for the stationary problem. Using a discontinuous Galerkin method in time we obtain error estimates for the full discretisation. Introduction of a weighted scalar products and norms allows us to estimate the error of the time-dependent problem in energy and balanced norm. So far it was open to prove such a result. Error estimates in the energy norm is for the standard finite element discretization in space, and for the error estimate in the balanced norm the computation of the numerical solution is changed by using a different bilinear form. Some numerical results are given to confirm the predicted theory and to show the effect of shifts on the solution.(c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:12
相关论文
共 30 条
[1]   First-Order System Least Squares Finite-Elements for Singularly Perturbed Reaction-Diffusion Equations [J].
Adler, James H. ;
MacLachlan, Scott ;
Madden, Niall .
LARGE-SCALE SCIENTIFIC COMPUTING (LSSC 2019), 2020, 11958 :3-14
[2]  
[Anonymous], 1976, Mat. Stos
[3]   Numerical Treatment for the Class of Time Dependent Singularly Perturbed Parabolic Problems with General Shift Arguments [J].
Bansal K. ;
Rai P. ;
Sharma K.K. .
Differential Equations and Dynamical Systems, 2017, 25 (2) :327-346
[4]  
Brdar M., 2022, ARXIV
[5]   An adaptive mesh method for time dependent singularly perturbed differential-difference equations [J].
Chakravarthy, P. Pramod ;
Kumar, Kamalesh .
NONLINEAR ENGINEERING - MODELING AND APPLICATION, 2019, 8 (01) :328-339
[6]   A fractional step method on a special mesh for the resolution of multidimensional evolutionary convection-diffusion problems [J].
Clavero, C ;
Jorge, JC ;
Lisbona, F ;
Shishkin, GI .
APPLIED NUMERICAL MATHEMATICS, 1998, 27 (03) :211-231
[7]   Finite element approximation of convection diffusion problems using graded meshes [J].
Duran, Ricardo G. ;
Lombardi, Ariel L. .
APPLIED NUMERICAL MATHEMATICS, 2006, 56 (10-11) :1314-1325
[8]   TIME DISCRETIZATION OF PARABOLIC PROBLEMS BY THE DISCONTINUOUS GALERKIN METHOD [J].
ERIKSSON, K ;
JOHNSON, C ;
THOMEE, V .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1985, 19 (04) :611-643
[9]   BIOMETRICS INVITED PAPER - STOCHASTIC-MODELS FOR SINGLE NEURON FIRING TRAINS - SURVEY [J].
FIENBERG, SE .
BIOMETRICS, 1974, 30 (03) :399-427
[10]  
Franz S, 2020, INT J NUMER ANAL MOD, V17, P532