Interface passivation using diketopyrrolopyrrole-oligothiophene copolymer to improve the performance of perovskite solar cells

被引:2
作者
Abicho, Samuel [1 ,2 ,3 ,4 ]
Hailegnaw, Bekele [5 ,6 ]
Mayr, Felix [3 ]
Cobet, Munise [3 ]
Yumusak, Cigdem [3 ]
Esubalew, Siraye [1 ]
Yohannes, Teketel [7 ]
Kaltenbrunner, Martin [5 ,6 ]
Sariciftci, Niyazi Serdar [3 ]
Scharber, Markus Clark [3 ]
Workneh, Getachew Adam [1 ,2 ,8 ]
机构
[1] Addis Ababa Sci & Technol Univ, Dept Ind Chem, Addis Ababa, Ethiopia
[2] Addis Ababa Sci & Technol Univ, Sustainable Energy Ctr Excellence, Addis Ababa, Ethiopia
[3] Johannes Kepler Univ Linz, Inst Phys Chem, Linz Inst Organ Solar Cells LIOS, Linz, Austria
[4] Hawassa Univ, Dept Chem, Hawassa, Ethiopia
[5] Johannes Kepler Univ Linz, Div Soft Matter Phys, Linz, Austria
[6] Johannes Kepler Univ Linz, LIT Soft Mat Lab, Linz, Austria
[7] Addis Ababa Univ, Dept Chem, Addis Ababa, Ethiopia
[8] Addis Ababa Sci & Technol Univ, Dept Ind Chem, POB 16417, Addis Ababa, Ethiopia
关键词
interface passivation; nonradiative recombination; organo-inorganic halide perovskite solar cells; power conversion efficiency; stability; DEFECT-PASSIVATION; HIGHLY EFFICIENT; CHARGE RECOMBINATION; TEMPERATURE; STABILITY; ANTISOLVENT;
D O I
10.1002/ese3.1745
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The unprecedented increase in power conversion efficiency (PCE) of low-cost organo-inorganic halide perovskite solar cells (OIHPSCs) toward its Shockley-Queisser limit intriguingly has prompted researchers to investigate the disadvantages of these devices. The issue of operational stability is the main hurdle challenging the way forward for commercialization. To address this, various engineering processes like composition, additives, anti-solvents, bulk and interface passivation, and deposition techniques have been widely applied to manage both extrinsic and intrinsic factors that induce degradation of the OIHPSCs. In this work, we employed interface passivation, which is an efficient approach to reduce nonradiative recombination. An ultrathin layer of electron donor diketopyrrolopyrrole-oligothiophene copolymer (DPP860) was applied as an interface passivator between the photoactive layer and [6,6]-phenyl C61 butyric acid methyl ester (PCBM). The role of the interface passivation on optoelectronic properties of the OIHPSCs was assessed using current density versus voltage (J-V) characteristics, photoluminescence spectroscopy and time-resolved photoluminescence spectroscopy. The findings show devices treated with DPP860 exhibit enhanced current density (Jsc) and fill factor, attributing for suppressed nonradiative recombination. Moreover, it shows relative improvement in the stability of the device. The results of this finding reveal that using oligothiophene copolymer can enhance the photovoltaic performance and the stability of inverted OIHPSCs in the ambient environment. The effect of an ultrathin layer of diketopyrrolopyrrole-oligothiophene copolymer (DPP860) interface passivator between the photoactive perovskite layer and [6,6]-phenyl C61 butyric acid methyl ester (PCBM) in improving the photovoltaic performance of the perovskite solar cell. image
引用
收藏
页码:2272 / 2283
页数:12
相关论文
共 61 条
[1]   Role of additives and surface passivation on the performance of perovskite solar cells [J].
Abicho, Samuel ;
Hailegnaw, Bekele ;
Workneh, Getachew Adam ;
Yohannes, Teketel .
MATERIALS FOR RENEWABLE AND SUSTAINABLE ENERGY, 2022, 11 (01) :47-70
[2]   Solution processed perovskite solar cells using highly conductive PEDOT:PSS interfacial layer [J].
Adam, Getachew ;
Kaltenbrunner, Martin ;
Glowacki, Eric Daniel ;
Apaydin, Dogukan Hazar ;
White, Matthew Schuette ;
Heilbrunner, Herwig ;
Tombe, Sekai ;
Stadler, Philipp ;
Ernecker, Bruno ;
Klampfl, Christian Wolfgang ;
Sariciftci, Niyazi Serdar ;
Scharber, Markus Clark .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2016, 157 :318-325
[3]  
Ball JM, 2016, NAT ENERGY, V1, P1, DOI [10.1038/NENERGY.2016.149, 10.1038/nenergy.2016.149]
[4]   Barrier Design to Prevent Metal-Induced Degradation and Improve Thermal Stability in Perovskite Solar Cells [J].
Boyd, Caleb C. ;
Cheacharoen, Rongrong ;
Bush, Kevin A. ;
Prasanna, Rohit ;
Leijtens, Tomas ;
McGehee, Michael D. .
ACS ENERGY LETTERS, 2018, 3 (07) :1772-1778
[5]   TRAP DENSITY DETERMINATION BY SPACE-CHARGE-LIMITED CURRENTS [J].
BUBE, RH .
JOURNAL OF APPLIED PHYSICS, 1962, 33 (05) :1733-&
[6]   Sequential deposition as a route to high-performance perovskite-sensitized solar cells [J].
Burschka, Julian ;
Pellet, Norman ;
Moon, Soo-Jin ;
Humphry-Baker, Robin ;
Gao, Peng ;
Nazeeruddin, Mohammad K. ;
Graetzel, Michael .
NATURE, 2013, 499 (7458) :316-+
[7]   On the Origin of the Ideality Factor in Perovskite Solar Cells [J].
Caprioglio, Pietro ;
Wolff, Christian M. ;
Sandberg, Oskar J. ;
Armin, Ardalan ;
Rech, Bernd ;
Albrecht, Steve ;
Neher, Dieter ;
Stolterfoht, Martin .
ADVANCED ENERGY MATERIALS, 2020, 10 (27)
[8]   Materials and Methods for Interface Engineering toward Stable and Efficient Perovskite Solar Cells [J].
Chen, Jiangzhao ;
Park, Nam-Gyu .
ACS ENERGY LETTERS, 2020, 5 (08) :2742-2786
[9]   N-type conjugated polymer as efficient electron transport layer for planar inverted perovskite solar cells with power conversion efficiency of 20.86% [J].
Chen, Wei ;
Shi, Yongqiang ;
Wang, Yang ;
Feng, Xiyuan ;
Djurisic, Aleksandra B. ;
Woo, Han Young ;
Guo, Xugang ;
He, Zhubing .
NANO ENERGY, 2020, 68
[10]   Non-Fullerene Small Molecule Electron-Transporting Materials for Efficient p-i-n Perovskite Solar Cells [J].
Choi, Da-Seul ;
Kwon, Sung-Nam ;
Na, Seok-In .
NANOMATERIALS, 2020, 10 (06)