BIPARTITE RAMSEY NUMBER PAIRS INVOLVING CYCLES

被引:1
作者
Joubert, Ernst J. [1 ]
Hattingh, Johannes H. [2 ]
机构
[1] Univ Johannesburg, Dept Math, ZA-2006 Auckland Pk, South Africa
[2] Univ North Carolina Wilmington, Dept Math & Stat, Wilmington, NC 28403 USA
关键词
bipartite graph; Ramsey; cycle;
D O I
10.7151/dmgt.2526
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For bipartite graphs G(1), G(2), ... , G(k), the bipartite Ramsey number b(G(1), G(2), ... , G(k)) is the least positive integer b, so that any coloring of the edges of K(b,b )with k colors, will result in a copy of G(i) in the ith color, for some i. We determine all pairs of positive integers r and t, such that for a sufficiently large positive integer s, any 2-coloring of K-r,K-t has a monochromatic copy of C-2s. Let a and b be positive integers with a >= b. For bipartite graphs G(1) and G(2), the bipartite Ramsey number pair (a, b), denoted by b(p)(G(1), G(2)) = (a, b), is an ordered pair of integers such that for any blue-red coloring of the edges of K-r,K-t, with r >= t, either a blue copy of G(1) exists or a red copy of G(2) exists if and only if r >= a and t >= b. In [Path-path Ramsey-type numbers for the complete bipartite graph, J. Combin. Theory Ser. B 19 (1975) 161-173], Faudree and Schelp showed that b(p)(P-2s, P-2s) = (2s - 1, 2s - 1), for s >= 1. In this paper we will show that for a sufficiently large positive integer s, any 2-coloring of K-2s,(2s-1) has a monochromatic C-2s. This will imply that b(p)(C-2s, C-2s) = (2s, 2s - 1), if s is sufficiently large.
引用
收藏
页码:151 / 190
页数:40
相关论文
共 9 条
[1]   3-Color bipartite Ramsey number of cycles and paths [J].
Bucic, Matija ;
Letzter, Shoham ;
Sudakov, Benny .
JOURNAL OF GRAPH THEORY, 2019, 92 (04) :445-459
[2]  
Chartrand G., 1996, GRAPHS DIGRAPHS
[3]  
ERDOS P, 1956, B AM MATH SOC, V62, P427
[4]   PATH-PATH RAMSEY-TYPE NUMBERS FOR COMPLETE BIPARTITE GRAPH [J].
FAUDREE, RJ ;
SCHELP, RH .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1975, 19 (02) :161-173
[5]   AN EXTREMAL PROBLEM FOR PATHS IN BIPARTITE GRAPHS [J].
GYARFAS, A ;
ROUSSEAU, CC ;
SCHELP, RH .
JOURNAL OF GRAPH THEORY, 1984, 8 (01) :83-95
[6]   Some multicolor bipartite Ramsey numbers involving cycles and a small number of colors [J].
Hattingh, Johannes H. ;
Joubert, Ernst J. .
DISCRETE MATHEMATICS, 2018, 341 (05) :1325-1330
[7]   Some Generalized Bipartite Ramsey Numbers Involving Short Cycles [J].
Joubert, Ernst J. .
GRAPHS AND COMBINATORICS, 2017, 33 (02) :433-448
[8]  
Shen LL, 2018, ELECTRON J COMB, V25
[9]  
Zhang R., 2013, INT J MATH COMPUT SC, V7, P42