Synergistic vesicle-vector systems for targeted delivery

被引:11
作者
Marquez, Christine Ardelle [1 ]
Oh, Cho-Im [1 ]
Ahn, Gna [1 ,2 ]
Shin, Woo-Ri [1 ,3 ]
Kim, Yang-Hoon [1 ,2 ]
Ahn, Ji-Young [1 ,2 ]
机构
[1] Chungbuk Natl Univ, Dept Microbiol, 1 Chungdae Ro, Cheongju 28644, South Korea
[2] Chungbuk Natl Univ, Ctr Ecol & Environm Toxicol, Cheongju 28644, South Korea
[3] Univ Penn, Dept Bioengn, 210 S 33rd St, Philadelphia, PA 19104 USA
基金
新加坡国家研究基金会;
关键词
Vesicle-vector system (VVS); Targeted delivery; Drug delivery system (DDS); Extracellular vesicle (EV); Liposome; Exosome; ACCELERATED BLOOD CLEARANCE; EXTRACELLULAR VESICLES; SURFACE DISPLAY; DRUG; LIPOSOMES; EXOSOMES; CELLS; APTAMER; NANOPARTICLES; PEPTIDE;
D O I
10.1186/s12951-023-02275-6
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
With the immense progress in drug delivery systems (DDS) and the rise of nanotechnology, challenges such as target specificity remain. The vesicle-vector system (VVS) is a delivery system that uses lipid-based vesicles as vectors for a targeted drug delivery. When modified with target-probing materials, these vesicles become powerful vectors for drug delivery with high target specificity. In this review, we discuss three general types of VVS based on different modification strategies: (1) vesicle-probes; (2) vesicle-vesicles; and (3) genetically engineered vesicles. The synthesis of each VVS type and their corresponding properties that are advantageous for targeted drug delivery, are also highlighted. The applications, challenges, and limitations of VVS are briefly examined. Finally, we share a number of insights and perspectives regarding the future of VVS as a targeted drug delivery system at the nanoscale.
引用
收藏
页数:25
相关论文
共 180 条
[1]   Bovine Colostrum Exosomes Are a Promising Natural Bacteriostatic Agent against Staphylococcus aureus [J].
Ahn, Gna ;
Shin, Woo-Ri ;
Lee, SeonHyung ;
Yoon, Hyo-Won ;
Choi, Jae-Won ;
Kim, Yang-Hoon ;
Ahn, Ji-Young .
ACS INFECTIOUS DISEASES, 2023, 9 (04) :993-1003
[2]   Multifaceted effects of milk-exosomes (Mi-Exo) as a modulator of scar-free wound healing [J].
Ahn, Gna ;
Kim, Yang-Hoon ;
Ahn, Ji-Young .
NANOSCALE ADVANCES, 2021, 3 (02) :528-537
[3]   Bombesin receptor-targeted liposomes for enhanced delivery to lung cancer cells [J].
Akbar, Mohammad J. ;
Ferreira, Pamela C. Lukasewicz ;
Giorgetti, Melania ;
Stokes, Leanne ;
Morris, Christopher J. .
BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 2019, 10 :2553-2562
[4]   Liposome: classification, preparation, and applications [J].
Akbarzadeh, Abolfazl ;
Rezaei-Sadabady, Rogaie ;
Davaran, Soodabeh ;
Joo, Sang Woo ;
Zarghami, Nosratollah ;
Hanifehpour, Younes ;
Samiei, Mohammad ;
Kouhi, Mohammad ;
Nejati-Koshki, Kazem .
NANOSCALE RESEARCH LETTERS, 2013, 8
[5]   Recent Progress in Bioconjugation Strategies for Liposome-Mediated Drug Delivery [J].
Almeida, Bethany ;
Nag, Okhil K. ;
Rogers, Katherine E. ;
Delehanty, James B. .
MOLECULES, 2020, 25 (23)
[6]   Exosomes and Exosome-Inspired Vesicles for Targeted Drug Delivery [J].
Antimisiaris, Sophia G. ;
Mourtas, Spyridon ;
Marazioti, Antonia .
PHARMACEUTICS, 2018, 10 (04)
[7]   Peptide functionalized liposomes for receptor targeted cancer therapy [J].
Aronson, Matthew R. ;
Medina, Scott H. ;
Mitchell, Michael J. .
APL BIOENGINEERING, 2021, 5 (01)
[8]   Structured edible lipid-based particle systems for oral drug-delivery [J].
Ashkar, Areen ;
Sosnik, Alejandro ;
Davidovich-Pinhas, Maya .
BIOTECHNOLOGY ADVANCES, 2022, 54
[9]   Outer Membrane Vesicles of Gram-Negative Bacteria: An Outlook on Biogenesis [J].
Avila-Calderon, Eric Daniel ;
del Socorro Ruiz-Palma, Maria ;
Aguilera-Arreola, Ma. Guadalupe ;
Velazquez-Guadarrama, Norma ;
Ruiz, Enrico A. ;
Gomez-Lunar, Zulema ;
Witonsky, Sharon ;
Contreras-Rodriguez, Araceli .
FRONTIERS IN MICROBIOLOGY, 2021, 12
[10]   RNA aptamer-conjugated liposome as an efficient anticancer drug delivery vehicle targeting cancer cells in vivo [J].
Baek, Si Eun ;
Lee, Kwang Hyun ;
Park, Yong Serk ;
Oh, Deok-Kun ;
Oh, Sangtaek ;
Kim, Keun-Sik ;
Kim, Dong-Eun .
JOURNAL OF CONTROLLED RELEASE, 2014, 196 :234-242