Online and Robust Intermittent Motion Planning in Dynamic and Changing Environments

被引:1
作者
Xu, Zirui [1 ]
Kontoudis, George P. [2 ]
Vamvoudakis, Kyriakos G. [3 ]
机构
[1] Univ Michigan, Dept Aerosp Engn, Ann Arbor, MI 48109 USA
[2] Univ Maryland College Pk, Dept Aerosp Engn, College Pk, MD 20742 USA
[3] Georgia Inst Technol, Daniel Guggenheim Sch Aerosp Engn, Atlanta, GA 30332 USA
基金
美国国家航空航天局;
关键词
Learning systems; motion planning; optimal control; reinforcement learning; LINEAR-SYSTEMS;
D O I
10.1109/TNNLS.2023.3303811
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this article, we propose RRT-Q(infinity)(X), an online and intermittent kinodynamic motion planning framework for dynamic environments with unknown robot dynamics and unknown disturbances. We leverage RRTX for global path planning and rapid replanning to produce waypoints as a sequence of boundary-value problems (BVPs). For each BVP, we formulate a finite-horizon, continuous-time zero-sum game, where the control input is the minimizer, and the worst case disturbance is the maximizer. We propose a robust intermittent Q-learning controller for waypoint navigation with completely unknown system dynamics, external disturbances, and intermittent control updates. We execute a relaxed persistence of excitation technique to guarantee that the Q-learning controller converges to the optimal controller. We provide rigorous Lyapunov-based proofs to guarantee the closed-loop stability of the equilibrium point. The effectiveness of the proposed RRT-Q(infinity)(X) is illustrated with Monte Carlo numerical experiments in numerous dynamic and changing environments.
引用
收藏
页码:17425 / 17439
页数:15
相关论文
共 54 条
  • [1] A real-time framework for kinodynamic planning in dynamic environments with application to quadrotor obstacle avoidance
    Allen, Ross E.
    Pavone, Marco
    [J]. ROBOTICS AND AUTONOMOUS SYSTEMS, 2019, 115 : 174 - 193
  • [2] Benchmark of Sampling-Based Optimizing Planners for Outdoor Robot Navigation
    Atas, Fetullah
    Cielniak, Grzegorz
    Grimstad, Lars
    [J]. INTELLIGENT AUTONOMOUS SYSTEMS 17, IAS-17, 2023, 577 : 231 - 243
  • [3] Basar T., 2008, H Optimal Control and Related Minimax Design Problems: a Dynamic Game Approach
  • [4] Berg C., 1984, HARMONIC ANAL SEMIGR, V100
  • [5] Bruce J, 2002, 2002 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, VOLS 1-3, PROCEEDINGS, P2383, DOI 10.1109/IRDS.2002.1041624
  • [6] Bryson A. E., 1975, Applied Optimal Control: Optimization, Estimation and Control, V1st
  • [7] RL-RRT: Kinodynamic Motion Planning via Learning Reachability Estimators From RL Policies
    Chiang, Hao-Tien Lewis
    Hsu, Jasmine
    Fiser, Marek
    Tapia, Lydia
    Faust, Aleksandra
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2019, 4 (04): : 4298 - 4305
  • [8] Concurrent learning adaptive control of linear systems with exponentially convergent bounds
    Chowdhary, Girish
    Yucelen, Tansel
    Muehlegg, Maximillian
    Johnson, Eric N.
    [J]. INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2013, 27 (04) : 280 - 301
  • [9] De Berg M., 2000, COMPUTATIONAL GEOMET
  • [10] Replanning with RRTs
    Ferguson, Dave
    Kalra, Nidhi
    Stentz, Anthony
    [J]. 2006 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), VOLS 1-10, 2006, : 1243 - 1248