Robust Iterative Learning Control for Robot Manipulators with Input Deadzone

被引:0
|
作者
Ji, Shuangjie [1 ]
Yan, Qiuzhen [1 ]
Chen, Qiang [2 ]
Lin, Mingjun [1 ]
机构
[1] Zhejiang Univ Water Resources & Elect Power, Coll Informat Engn, Hangzhou 310018, Zhejiang, Peoples R China
[2] Zhejiang Univ Technol, Coll Informat Engn, Hangzhou 310023, Zhejiang, Peoples R China
来源
2023 IEEE 12TH DATA DRIVEN CONTROL AND LEARNING SYSTEMS CONFERENCE, DDCLS | 2023年
关键词
Adaptive iterative learning control; nonparametric systems; input deadzone; inverse model; NONLINEAR-SYSTEMS;
D O I
10.1109/DDCLS58216.2023.10166087
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This work studies trajectory tracking problem for robot manipulators with actuator deadzone under arbitrary initial states. A robust iterative learning control scheme is developed according to Lyapunov theory. First, the rectification reference trajectory is constructed for handling initial position of robotic ILC systems. Then, based on system parameterization technique, a robust adaptive iterative learning control law is derived to dealing with the deadzone nonlinearity and uncertainties. The convergence performance of the system and the boundedness of the closed-loop signal are proved by theoretical analysis. At the end, a numerical simulation is carried out to demonstrate the effectiveness of the proposed robust learning control scheme.
引用
收藏
页码:1944 / 1951
页数:8
相关论文
共 50 条
  • [1] Iterative learning control for systems with input deadzone
    Xu, JX
    Xu, J
    Lee, TH
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2005, 50 (09) : 1455 - 1459
  • [2] Iterative learning control for systems with input deadzone
    Xu, JX
    Xu, J
    Lee, TH
    2004 43RD IEEE CONFERENCE ON DECISION AND CONTROL (CDC), VOLS 1-5, 2004, : 1307 - 1312
  • [3] Initial-Rectification Neuro-Adaptive Iterative Learning Control for Robot Manipulators With Input Deadzone and Nonzero Initial Errors
    Zhang, Haibo
    Yan, Qiuzhen
    Cai, Jianping
    Gao, Shenyong
    Zhang, Ying
    IEEE ACCESS, 2023, 11 : 22441 - 22449
  • [4] Decentralized Robust Adaptive Iterative Learning Control of Robot Manipulators
    Sun, Lili
    Duan, Wenyong
    2018 37TH CHINESE CONTROL CONFERENCE (CCC), 2018, : 2685 - 2689
  • [5] Robust Iterative Learning Control for Vitration Suppression of Industrial Robot Manipulators
    Wang, Cong
    Zheng, Minghui
    Wang, Zining
    Peng, Cheng
    Tomizuka, Masayoshi
    JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2018, 140 (01):
  • [6] AN ITERATIVE LEARNING CONTROL OF ROBOT MANIPULATORS
    KUC, TY
    NAM, KH
    LEE, JS
    IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, 1991, 7 (06): : 835 - 842
  • [7] Iterative learning control for robot manipulators using the finite dimensional input subspace
    Hamamoto, K
    Sugie, T
    IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, 2002, 18 (04): : 632 - 635
  • [8] Iterative learning control for robot manipulators using the finite dimensional input subspace
    Hamamoto, K
    Sugie, T
    PROCEEDINGS OF THE 40TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5, 2001, : 4926 - 4931
  • [9] Adaptive iterative learning control for robot manipulators
    Tayebi, A
    AUTOMATICA, 2004, 40 (07) : 1195 - 1203
  • [10] Iterative learning control schemes for robot manipulators
    Bouakrif, Farah
    Boukhetala, Djamel
    Boudjema, Farès
    Mediterranean Journal of Measurement and Control, 2007, 3 (03): : 104 - 112