Coartinianness of extension and torsion functors

被引:0
作者
Shen, Jingwen [1 ]
Yang, Xiaoyan [1 ,2 ]
机构
[1] Zhejiang Univ Sci & Technol, Hangzhou, Peoples R China
[2] Zhejiang Univ Sci & Technol, Hangzhou 310023, Peoples R China
基金
中国国家自然科学基金;
关键词
Coartinian module; linearly compact module; LOCAL COHOMOLOGY MODULES; COFINITENESS; DIMENSION; IDEALS; HOMOLOGY; RESPECT;
D O I
10.1080/00927872.2023.2224875
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (R, m) be a commutative noetherian local ring with m-adic topology, I an ideal of R. We investigate coartinianness of Ext and Tor, showthat the R-module Ext(R)(i)(N, M) is I-coartinian if M is a linearly compact I-coartinian R-module and N is an I-cofinite R-module of dimension at most 1; the R-module Tor(j)(R) (N, M) is I-coartinian in the case M is semi-discrete linearly compact I-coartinian and N is finitely generated with dimension at most 2.
引用
收藏
页码:5054 / 5064
页数:11
相关论文
共 27 条
[1]   Cofiniteness of extension functors of cofinite modules [J].
Abazari, Rasoul ;
Bahmanpour, Kamal .
JOURNAL OF ALGEBRA, 2011, 330 (01) :507-516
[2]   On the cofiniteness of local cohomology modules [J].
Bahmanpour, Kamal ;
Naghipour, Reza .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 136 (07) :2359-2363
[3]   Cofiniteness of torsion functors of a pair of cofinite modules [J].
Bahmanpour, Kamal .
COMMUNICATIONS IN ALGEBRA, 2021, 49 (07) :2837-2850
[4]   Cohomological dimension, cofiniteness and Abelian categories of cofinite modules [J].
Bahmanpour, Kamal .
JOURNAL OF ALGEBRA, 2017, 484 :168-197
[5]   Cofiniteness of local cohomology modules for ideals of small dimension [J].
Bahmanpour, Kamal ;
Naghipour, Reza .
JOURNAL OF ALGEBRA, 2009, 321 (07) :1997-2021
[6]   Cofiniteness of local cohomology modules over regular local rings [J].
Chiriacescu, G .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2000, 32 :1-7
[7]  
Cuong NT, 2001, MATH PROC CAMBRIDGE, V131, P61
[8]  
Faridian H., 2020, THESIS SHAHID BEHESH
[9]  
Grothendieck A., 1968, Cohomologie locale des faisceaux coherents et theoremes de Lefschetz locaux et globaux SGA2
[10]   AFFINE DUALITY AND COFINITENESS [J].
HARTSHORNE, R .
INVENTIONES MATHEMATICAE, 1970, 9 (02) :145-+