Integrative physiological, transcriptome and metabolome analysis reveals the involvement of carbon and flavonoid biosynthesis in low phosphorus tolerance in cotton

被引:23
|
作者
Iqbal, Asif [1 ]
Qiang, Dong [1 ]
Wang, Xiangru [1 ,2 ]
Gui, Huiping [1 ]
Zhang, Hengheng [1 ]
Zhang, Xiling [1 ,2 ]
Song, Meizhen [1 ,2 ]
机构
[1] Zhengzhou Univ, Inst Cotton Res, Sch Agr Sci, State Key Lab Cotton Biol,Chinese Acad Agr Sci, Anyang 455000, Henan, Peoples R China
[2] Chinese Acad Agr Sci, Western Agr Res Ctr, Changji 831100, Xinjiang, Peoples R China
关键词
Cotton; Phosphorus starvation; Transcriptome; Metabolome; Flavonoid biosynthesis; PHASEOLUS-VULGARIS L; USE EFFICIENCY; WHITE LUPIN; ROOTS; RESPONSES; ARABIDOPSIS; DEFICIENCY; IDENTIFICATION; GROWTH; TRANSPORTERS;
D O I
10.1016/j.plaphy.2023.01.042
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Phosphorus (P) is an essential nutrient controlling plant growth and development through the regulation of basic metabolic processes; however, the molecular details of these pathways remain largely unknown. In this study, physiological, transcriptome, and metabolome analysis were compared for two cotton genotypes with different low P tolerance under P starvation and resupply. The results showed that the glucose, fructose, sucrose, and starch contents increased by 18.2%, 20.4%, 20.2%, and 14.3% in the roots and 18.3%, 23.3%, 11.0%, and 13.6% in the shoot of Jimian169 than DES926, respectively. Moreover, the activities of enzymes related to carbon and phosphorus metabolism were higher in the roots and shoots of Jimian169 than DES926. In addition, transcriptome analysis revealed that the number of differentially expressed genes (DEGs) was higher in both roots (830) and shoots (730) under P starvation and the DEGs drastically reduced upon P resupply. The KEGG analysis indicated that DEGs were mainly enriched in phenylpropanoid biosynthesis, carbon metabolism, and photosynthesis. The metabolome analysis showed the enrichment of phenylpropanoid, organic acids and derivatives, and lipids in all the pairs at a given time point. The combined transcriptome and metabolome analysis revealed that carbon metabolism and flavonoid biosynthesis are involved in the P starvation response in cotton. Moreover, co-expression network analysis identified 3 hub genes in the roots and shoots that regulate the pathways involved in the P starvation response. This study provides the foundation for understanding the mechanisms of low P tolerance and the hub genes as a potential target for the development of low P tolerant genotypes.
引用
收藏
页码:302 / 317
页数:16
相关论文
共 50 条
  • [1] Integrative analysis of transcriptome and metabolome reveals flavonoid biosynthesis regulation in Rhododendron pulchrum petals
    Xi Xia
    Rui Gong
    Chunying Zhang
    BMC Plant Biology, 22
  • [2] Integrative Analysis of Metabolome and Transcriptome Reveals the Mechanism of Flavonoid Biosynthesis in Lithocarpus polystachyus Rehd
    Zhang, Duoduo
    Wang, Shuqing
    Lin, Limei
    Zhang, Jie
    Cui, Minghui
    Wang, Shuo
    Zhao, Xuelei
    Dong, Jing
    Long, Yuehong
    Xing, Zhaobin
    ACS OMEGA, 2022, 7 (23): : 19437 - 19453
  • [3] Integrative analysis of transcriptome and metabolome reveals flavonoid biosynthesis regulation in Rhododendron pulchrum petals
    Xia, Xi
    Gong, Rui
    Zhang, Chunying
    BMC PLANT BIOLOGY, 2022, 22 (01)
  • [4] Integrative analysis of metabolome and transcriptome reveals regulatory mechanisms of flavonoid biosynthesis in soybean under salt stress
    Wang, Yubin
    Liu, Wei
    Li, Wei
    Wang, Caijie
    Dai, Haiying
    Xu, Ran
    Zhang, Yanwei
    Zhang, Lifeng
    FRONTIERS IN PLANT SCIENCE, 2024, 15
  • [5] Integrative analysis of the metabolome and transcriptome provides insights into the mechanisms of flavonoid biosynthesis in blackberry
    Wu, Yaqiong
    Zhang, Chunhong
    Huang, Zhengjin
    Lyu, Lianfei
    Li, Weilin
    Wu, Wenlong
    FOOD RESEARCH INTERNATIONAL, 2022, 153
  • [6] Integrative analysis of the metabolome and transcriptome provides insights into the mechanisms of flavonoid biosynthesis in Polygonatum
    Wan, Xiaolin
    Xiao, Qiang
    PLOS ONE, 2025, 20 (01):
  • [7] Integrative Metabolome and Transcriptome Analysis Reveals the Regulatory Network of Flavonoid Biosynthesis in Response to MeJA in Camellia vietnamensis Huang
    Yan, Heqin
    Zheng, Wei
    Wang, Yong
    Wu, Yougen
    Yu, Jing
    Xia, Pengguo
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (16)
  • [8] Integrative Analysis of the Transcriptome and Metabolome Reveals Genes Involved in Phenylpropanoid and Flavonoid Biosynthesis in the Trapa bispinosa Roxb.
    Yin, Dong-Jie
    Ye, Shi-Jie
    Sun, Xiao-Yan
    Chen, Qin-Yi
    Min, Ting
    Wang, Hong-Xun
    Wang, Li-Mei
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [9] Integrated Analysis of Metabolome and Transcriptome Reveals Insights for Low Phosphorus Tolerance in Wheat Seedling
    Li, Pengcheng
    Ma, Xiaole
    Wang, Juncheng
    Yao, Lirong
    Li, Baochun
    Meng, Yaxiong
    Si, Erjing
    Yang, Ke
    Shang, Xunwu
    Zhang, Xueyong
    Wang, Huajun
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (19)
  • [10] Integrative analysis of metabolome and transcriptome reveals molecular regulatory mechanism of flavonoid biosynthesis in Cyclocarya paliurus under salt stress
    Zhang, Lei
    Zhang, Zijie
    Fang, Shengzuo
    Liu, Yang
    Shang, Xulan
    INDUSTRIAL CROPS AND PRODUCTS, 2021, 170