SHORT NOTE ON THE POSITION OF BIFURCATION POINTS FOR THE LIMITING SYSTEM ARISING FROM THE TWO COMPETING SPECIES MODEL

被引:1
作者
Kan-on, Yukio [1 ]
机构
[1] Ehime Univ, Fac Educ, Dept Math, Matsuyama 7908577, Japan
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B | 2023年 / 28卷 / 12期
关键词
Competition-diffusion system; radially symmetric positive solution; bifurcation point; SPATIAL SEGREGATION; DIFFUSION;
D O I
10.3934/dcdsb.2023022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we treat the competition-diffusion system with non -linear diffusion term, which was proposed by Sigesada, Kawasaki and Teramoto in 1979 to model the segregation of interacting species, and discuss the bifurca-tion structure of nonnegative solution for the limiting system arising from the competition-diffusion system as the interspecific competition rate tends to +8. To do this, we employ the comparison principle and the property of the Bessel function, and study the position of bifurcation points, at which a nonconstant solution bifurcates from the constant solution, for the limiting system.
引用
收藏
页码:6233 / 6247
页数:15
相关论文
共 9 条
[1]   Spatial segregation limit of a competition-diffusion system [J].
Dancer, EN ;
Hilhorst, D ;
Mimura, M ;
Peletier, LA .
EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 1999, 10 :97-115
[2]  
Kan-on Y., 2011, DYNAM CONT DIS SER A, V18, P559
[3]   On the Structure of Positive Solutions for the Shigesada-Kawasaki-Teramoto Model with Large Interspecific Competition Rate [J].
Kan-on, Yukio .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2020, 30 (01)
[5]   LIMITING STRUCTURE OF SHRINKING SOLUTIONS TO THE STATIONARY SHIGESADA-KAWASAKI-TERAMOTO MODEL WITH LARGE CROSS-DIFFUSION [J].
Kuto, Kousuke .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2015, 47 (05) :3993-4024
[6]   Diffusion vs cross-diffusion: An elliptic approach [J].
Lou, Y ;
Ni, WM .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1999, 154 (01) :157-190
[7]   PATTERN FORMATION IN A CROSS-DIFFUSION SYSTEM [J].
Lou, Yuan ;
Ni, Wei-Ming ;
Yotsutani, Shoji .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2015, 35 (04) :1589-1607
[8]  
Rabinowitz P., 1971, J. Funct. Anal., V7, P487, DOI 10.1016/0022-1236(71)90030-9
[9]   SPATIAL SEGREGATION OF INTERACTING SPECIES [J].
SHIGESADA, N ;
KAWASAKI, K ;
TERAMOTO, E .
JOURNAL OF THEORETICAL BIOLOGY, 1979, 79 (01) :83-99