Extending Partial Representations of Circle Graphs in Near-Linear Time

被引:1
作者
Brueckner, Guido [2 ]
Rutter, Ignaz [3 ]
Stumpf, Peter [1 ,3 ]
机构
[1] Charles Univ Prague, Dept Appl Math KAM, Prague, Czech Republic
[2] Karlsruhe Inst Technol KIT, Dept Informat, Karlsruhe, Germany
[3] Univ Passau, Fac Comp Sci & Math, Passau, Germany
关键词
Circle graphs; Simultaneous representation; Geometric intersection graphs; Recognition; DECOMPOSITION; RECOGNITION;
D O I
10.1007/s00453-024-01216-5
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The partial representation extension problem generalizes the recognition problem for geometric intersection graphs. The input consists of a graph G, a subgraph H subset of G \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H \subseteq G$$\end{document} and a representation R ' \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal R'$$\end{document} of H. The question is whether G admits a representation R \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal R$$\end{document} whose restriction to H is R ' \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal R'$$\end{document} . We study this question for circle graphs, which are intersection graphs of chords of a circle. Their representations are called chord diagrams. We show that for a graph with n vertices and m edges the partial representation extension problem can be solved in O ( ( n + m ) alpha ( n + m ) ) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O((n + m) \alpha (n + m))$$\end{document} time, thereby improving over an O ( n 3 ) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n<^>3)$$\end{document} -time algorithm by Chaplick et al. (J Graph Theory 91(4), 365-394, 2019). The main technical contributions are a canonical way of orienting chord diagrams and a novel compact representation of the set of all canonically oriented chord diagrams that represent a given circle graph G, which is of independent interest.
引用
收藏
页码:2152 / 2173
页数:22
相关论文
共 21 条
[1]   Testing Planarity of Partially Embedded Graphs [J].
Angelini, Patrizio ;
Di Battista, Giuseppe ;
Frati, Fabrizio ;
Jelinek, Vit ;
Kratochvil, Jan ;
Patrignani, Maurizio ;
Rutter, Ignaz .
ACM TRANSACTIONS ON ALGORITHMS, 2015, 11 (04)
[2]   Extending Simple Drawings [J].
Arroyo, Alan ;
Derka, Martin ;
Parada, Irene .
GRAPH DRAWING AND NETWORK VISUALIZATION, 2019, 11904 :230-243
[3]   REDUCING PRIME GRAPHS AND RECOGNIZING CIRCLE GRAPHS [J].
BOUCHET, A .
COMBINATORICA, 1987, 7 (03) :243-254
[4]   Extending partial representations of circle graphs [J].
Chaplick, Steven ;
Fulek, Radoslav ;
Klavik, Pavel .
JOURNAL OF GRAPH THEORY, 2019, 91 (04) :365-394
[5]  
COURCELLE B, 2008, J APPL LOGIC, V6, P416, DOI DOI 10.1016/J.JAL.2007.05.001
[6]   DECOMPOSITION OF DIRECTED-GRAPHS [J].
CUNNINGHAM, WH .
SIAM JOURNAL ON ALGEBRAIC AND DISCRETE METHODS, 1982, 3 (02) :214-228
[7]  
DIBATTISTA G, 1990, LECT NOTES COMPUT SC, V443, P598
[8]   TRANSITIV ORIENTIERBARE GRAPHEN [J].
GALLAI, T .
ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1967, 18 (1-2) :25-&
[9]   Practical and Efficient Circle Graph Recognition [J].
Gioan, Emeric ;
Paul, Christophe ;
Tedder, Marc ;
Corneil, Derek .
ALGORITHMICA, 2014, 69 (04) :759-788
[10]   Practical and Efficient Split Decomposition via Graph-Labelled Trees [J].
Gioan, Emeric ;
Paul, Christophe ;
Tedder, Marc ;
Corneil, Derek .
ALGORITHMICA, 2014, 69 (04) :789-843