Clinical Application of Polygenic Risk Score in IgA Nephropathy

被引:3
作者
Xu, Linlin [1 ,2 ,3 ,4 ]
Gan, Ting [1 ,2 ,3 ,4 ]
Chen, Pei [1 ,2 ,3 ,4 ]
Liu, Yang [1 ,2 ,3 ,4 ]
Qu, Shu [1 ,2 ,3 ,4 ]
Shi, Sufang [1 ,2 ,3 ,4 ]
Liu, Lijun [1 ,2 ,3 ,4 ]
Zhou, Xujie [1 ,2 ,3 ,4 ]
Lv, Jicheng [1 ,2 ,3 ,4 ]
Zhang, Hong [1 ,2 ,3 ,4 ]
机构
[1] Peking Univ, Hosp 1, Renal Div, 8 Xishiku St, Beijing 100034, Peoples R China
[2] Peking Univ, Inst Nephrol, Kidney Genet Ctr, Beijing 100034, Peoples R China
[3] Minist Hlth China, Key Lab Renal Dis, Beijing 100034, Peoples R China
[4] Peking Univ, Minist Educ, Key Lab Chron Kidney Dis Prevent & Treatment, Beijing 100034, Peoples R China
来源
PHENOMICS | 2024年 / 4卷 / 02期
基金
美国国家科学基金会;
关键词
Genomics; IgA nephropathy; Polygenic score; Prognosis; Risk prediction; GENOME-WIDE ASSOCIATION; OXFORD CLASSIFICATION; GENETIC-DETERMINANTS; PREDICTION; GLOMERULONEPHRITIS; POPULATION; DISEASE; LOCI;
D O I
10.1007/s43657-023-00138-6
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Genome-wide association studies (GWASs) have identified 30 independent genetic variants associated with IgA nephropathy (IgAN). A genetic risk score (GRS) represents the number of risk alleles carried and thus captures an individual's genetic risk. However, whether and which polygenic risk score crucial for the evaluation of any potential personal or clinical utility on risk and prognosis are still obscure. We constructed different GRS models based on different sets of variants, which were top single nucleotide polymorphisms (SNPs) reported in the previous GWASs. The case-control GRS analysis included 3365 IgAN patients and 8842 healthy individuals. The association between GRS and clinical variability, including age at diagnosis, clinical parameters, Oxford pathology classification, and kidney prognosis was further evaluated in a prospective cohort of 1747 patients. Three GRS models (15 SNPs, 21 SNPs, and 55 SNPs) were constructed after quality control. The patients with the top 20% GRS had 2.42-(15 SNPs, p = 8.12 x 10-40), 3.89-(21 SNPs, p = 3.40 x 10-80) and 3.73-(55 SNPs, p = 6.86 x 10-81) fold of risk to develop IgAN compared to the patients with the bottom 20% GRS, with area under the receiver operating characteristic curve (AUC) of 0.59, 0.63, and 0.63 in group discriminations, respectively. A positive correlation between GRS and microhematuria, mesangial hypercellularity, segmental glomerulosclerosis and a negative correlation on the age at diagnosis, body mass index (BMI), mean arterial pressure (MAP), serum C3, triglycerides can be observed. Patients with the top 20% GRS also showed a higher risk of worse prognosis for all three models (1.36, 1.42, and 1.36 fold of risk) compared to the remaining 80%, whereas 21 SNPs model seemed to show a slightly better fit in prediction. Collectively, a higher burden of risk variants is associated with earlier disease onset and a higher risk of a worse prognosis. This may be informational in translating knowledge on IgAN genetics into disease risk prediction and patient stratification.
引用
收藏
页码:146 / 157
页数:12
相关论文
共 52 条
[1]   Genomic prediction of coronary heart disease [J].
Abraham, Gad ;
Havulinna, Aki S. ;
Bhalala, Oneil G. ;
Byars, Sean G. ;
De Livera, Alysha M. ;
Yetukuri, Laxman ;
Tikkanen, Emmi ;
Perola, Markus ;
Schunkert, Heribert ;
Sijbrands, Eric J. ;
Palotie, Aarno ;
Samani, Nilesh J. ;
Salomaa, Veikko ;
Ripatti, Samuli ;
Inouye, Michael .
EUROPEAN HEART JOURNAL, 2016, 37 (43) :3267-3278
[2]  
Barsoum RS, 2010, CLIN NEPHROL, V74, pS44
[3]   The Oxford classification of IgA nephropathy: rationale, clinicopathological correlations, and classification [J].
Cattran, Daniel C. ;
Coppo, Rosanna ;
Cook, H. Terence ;
Feehally, John ;
Roberts, Ian S. D. ;
Troyanov, Stephan ;
Alpers, Charles E. ;
Amore, Alessandro ;
Barratt, Jonathan ;
Berthoux, Francois ;
Bonsib, Stephen ;
Bruijn, Jan A. ;
D'Agati, Vivette ;
D'Amico, Giuseppe ;
Emancipator, Steven ;
Emma, Francesco ;
Ferrario, Franco ;
Fervenza, Fernando C. ;
Florquin, Sandrine ;
Fogo, Agnes ;
Geddes, Colin C. ;
Groene, Hermann-Josef ;
Haas, Mark ;
Herzenberg, Andrew M. ;
Hill, Prue A. ;
Hogg, Ronald J. ;
Hsu, Stephen I. ;
Jennette, J. Charles ;
Joh, Kensuke ;
Julian, Bruce A. ;
Kawamura, Tetsuya ;
Lai, Fernand M. ;
Leung, Chi Bon ;
Li, Lei-Shi ;
Li, Philip K. T. ;
Liu, Zhi-Hong ;
Mackinnon, Bruce ;
Mezzano, Sergio ;
Schena, F. Paolo ;
Tomino, Yasuhiko ;
Walker, Patrick D. ;
Wang, Haiyan ;
Weening, Jan J. ;
Yoshikawa, Nori ;
Zhang, Hong .
KIDNEY INTERNATIONAL, 2009, 76 (05) :534-545
[4]   Genome-wide association study identifies TNFSF13 as a susceptibility gene for IgA in a South Chinese population in smokers [J].
Chen Yang ;
Wang Jie ;
Yang Yanlong ;
Guo Xuefeng ;
Tan Aihua ;
Gao Yong ;
Lu Zheng ;
Zhang Youjie ;
Zhang Haiying ;
Qin Xue ;
Qin Min ;
Mo Linjian ;
Yang Xiaobo ;
Hu Yanling ;
Mo Zengnan .
IMMUNOGENETICS, 2012, 64 (10) :747-753
[5]   PRSice-2: Polygenic Risk Score software for biobank-scale data [J].
Choi, Shing Wan ;
O'Reilly, Paul F. .
GIGASCIENCE, 2019, 8 (07)
[6]   Identification of risk loci and a polygenic risk score for lung cancer: a large-scale prospective cohort study in Chinese populations [J].
Dai, Juncheng ;
Zhu, Meng ;
Wang, Yuzhuo ;
Qin, Na ;
Ma, Hongxia ;
He, Yong-Qiao ;
Zhang, Ruoxin ;
Tan, Wen ;
Fan, Jingyi ;
Wang, Tianpei ;
Zheng, Hong ;
Sun, Qi ;
Wang, Lijuan ;
Huang, Mingtao ;
Ge, Zijun ;
Yu, Canqing ;
Guo, Yu ;
Wang, Tong-Min ;
Wang, Jie ;
Xu, Lin ;
Wu, Weibing ;
Chen, Liang ;
Bian, Zheng ;
Walters, Robin ;
Millwood, Iona Y. ;
Li, Xi-Zhao ;
Wang, Xin ;
Hung, Rayjean J. ;
Christiani, David C. ;
Chen, Haiquan ;
Wang, Mengyun ;
Wang, Cheng ;
Jiang, Yue ;
Chen, Kexin ;
Chen, Zhengming ;
Jin, Guangfu ;
Wu, Tangchun ;
Lin, Dongxin ;
Hu, Zhibin ;
Amos, Christopher I. ;
Wu, Chen ;
Wei, Qingyi ;
Jia, Wei-Hua ;
Li, Liming ;
Shen, Hongbing .
LANCET RESPIRATORY MEDICINE, 2019, 7 (10) :881-891
[7]  
DAMICO G, 1987, Q J MED, V64, P709
[8]   Predictive Accuracy of a Polygenic Risk Score-Enhanced Prediction Model vs a Clinical Risk Score for Coronary Artery Disease [J].
Elliott, Joshua ;
Bodinier, Barbara ;
Bond, Tom A. ;
Chadeau-Hyam, Marc ;
Evangelou, Evangelos ;
Moons, Karel G. M. ;
Dehghan, Abbas ;
Muller, David C. ;
Elliott, Paul ;
Tzoulaki, Ioanna .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2020, 323 (07) :636-645
[9]   HLA Has Strongest Association with IgA Nephropathy in Genome-Wide Analysis [J].
Feehally, John ;
Farrall, Martin ;
Boland, Anne ;
Gale, Daniel P. ;
Gut, Ivo ;
Heath, Simon ;
Kumar, Ashish ;
Peden, John F. ;
Maxwell, Patrick H. ;
Morris, David L. ;
Padmanabhan, Sandosh ;
Vyse, Timothy J. ;
Zawadzka, Anna ;
Rees, Andrew J. ;
Lathrop, Mark ;
Ratcliffe, Peter J. .
JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2010, 21 (10) :1791-1797
[10]   Primary glomerulonephritides [J].
Floege, Juergen ;
Amann, Kerstin .
LANCET, 2016, 387 (10032) :2036-2048