Association between Estimated Cardiorespiratory Fitness and Abnormal Glucose Risk: A Cohort Study

被引:2
作者
Sloan, Robert A. A. [1 ]
Kim, Youngdeok [2 ]
Kenyon, Jonathan [2 ]
Visentini-Scarzanella, Marco [1 ]
Sawada, Susumu S. S. [3 ]
Sui, Xuemei [4 ]
Lee, I-Min [5 ,6 ]
Myers, Jonathan N. N. [7 ]
Lavie, Carl J. J. [8 ]
机构
[1] Kagoshima Univ, Grad Med Sch, Dept Social & Behav Med, Kagoshima 8908520, Japan
[2] Virginia Commonwealth Univ, Dept Kinesiol & Hlth Sci, Richmond, VA 23284 USA
[3] Waseda Univ, Fac Sport Sci, Saitama 3591192, Japan
[4] Univ South Carolina, Arnold Sch Publ Hlth, Dept Exercise Sci, Columbia, SC 29208 USA
[5] Harvard TH Chan Sch Publ Hlth, Dept Epidemiol, Boston, MA 02115 USA
[6] Harvard Med Sch, Brigham & Womens Hosp, Dept Med, Div Prevent Med, Boston, MA 02115 USA
[7] Stanford Univ, Vet Affairs Palo Alto Hlth Care Syst, Div Cardiovasc Med, Palo Alto, CA 94304 USA
[8] Univ Queensland, John Ochsner Heart & Vasc Inst, Ochsner Clin Sch, Dept Cardiovasc Dis,Sch Med, New Orleans, LA 70121 USA
基金
日本学术振兴会; 美国国家卫生研究院;
关键词
estimated cardiorespiratory fitness; physical activity; prediabetes; diabetes; abnormal blood glucose; electronic health records; epidemiology; prevention; primary care; ALL-CAUSE MORTALITY; CARDIOVASCULAR-DISEASE; PHYSICAL-ACTIVITY; HEALTH;
D O I
10.3390/jcm12072740
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background: Cardiorespiratory fitness (CRF) is a predictor of chronic disease that is impractical to routinely measure in primary care settings. We used a new estimated cardiorespiratory fitness (eCRF) algorithm that uses information routinely documented in electronic health care records to predict abnormal blood glucose incidence.Methods: Participants were adults (17.8% female) 20-81 years old at baseline from the Aerobics Center Longitudinal Study between 1979 and 2006. eCRF was based on sex, age, body mass index, resting heart rate, resting blood pressure, and smoking status. CRF was measured by maximal treadmill testing. Cox proportional hazards regression models were established using eCRF and CRF as independent variables predicting the abnormal blood glucose incidence while adjusting for covariates (age, sex, exam year, waist girth, heavy drinking, smoking, and family history of diabetes mellitus and lipids).Results: Of 8602 participants at risk at baseline, 3580 (41.6%) developed abnormal blood glucose during an average of 4.9 years follow-up. The average eCRF of 12.03 +/- 1.75 METs was equivalent to the CRF of 12.15 +/- 2.40 METs within the 10% equivalence limit. In fully adjusted models, the estimated risks were the same (HRs = 0.96), eCRF (95% CIs = 0.93-0.99), and CRF (95% CI of 0.94-0.98). Each 1-MET increase was associated with a 4% reduced risk.Conclusions: Higher eCRF is associated with a lower risk of abnormal glucose. eCRF can be a vital sign used for research and prevention.
引用
收藏
页数:10
相关论文
共 39 条
  • [1] [Anonymous], 2022, National Diabetes Statistics Report
  • [2] Longitudinal Algorithms to Estimate Cardiorespiratory Fitness Associations With Nonfatal Cardiovascular Disease and Disease-Specific Mortality
    Artero, Enrique G.
    Jackson, Andrew S.
    Sui, Xuemei
    Lee, Duck-chul
    O'Connor, Daniel P.
    Lavie, Carl J.
    Church, Timothy S.
    Blair, Steven N.
    [J]. JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2014, 63 (21) : 2289 - 2296
  • [3] The incremental prognostic value of percentage of heart rate reserve achieved over myocardial perfusion single-photon emission computed tomography in the prediction of cardiac death and all-cause mortality
    Azarbal, B
    Hayes, SW
    Lewin, HC
    Hachamovitch, R
    Cohen, I
    Berman, DS
    [J]. JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2004, 44 (02) : 423 - 430
  • [4] BALKE B, 1959, U S Armed Forces Med J, V10, P675
  • [5] Less Sitting, More Physical Activity, or Higher Fitness?
    Bouchard, Claude
    Blair, Steven N.
    Katzmarzyk, Peter T.
    [J]. MAYO CLINIC PROCEEDINGS, 2015, 90 (11) : 1533 - 1540
  • [6] Prediction of cardiovascular health by non-exercise estimated cardiorespiratory fitness
    Cabanas-Sanchez, Veronica
    Artero, Enrique G.
    Lavie, Carl J.
    Higueras-Fresnillo, Sara
    Garcia-Esquinas, Esther
    Sadarangani, Kabir P.
    Ortola, Rosario
    Rodriguez-Artalejo, Fernando
    Martinez-Gomez, David
    [J]. HEART, 2020, 106 (23) : 1832 - 1838
  • [7] Twenty year fitness trends in young adults and incidence of prediabetes and diabetes: the CARDIA study
    Chow, Lisa S.
    Odegaard, Andrew O.
    Bosch, Tyler A.
    Bantle, Anne E.
    Wang, Qi
    Hughes, John
    Carnethon, Mercedes
    Ingram, Katherine H.
    Durant, Nefertiti
    Lewis, Cora E.
    Ryder, Justin
    Shay, Christina M.
    Kelly, Aaron S.
    Schreiner, Pamela J.
    [J]. DIABETOLOGIA, 2016, 59 (08) : 1659 - 1665
  • [8] Variation in Electronic Health Record Documentation of Social Determinants of Health Across a National Network of Community Health Centers
    Cottrell, Erika K.
    Dambrun, Katie
    Cowburn, Stuart
    Mossman, Ned
    Bunce, Arwen E.
    Marino, Miguel
    Krancari, Molly
    Gold, Rachel
    [J]. AMERICAN JOURNAL OF PREVENTIVE MEDICINE, 2019, 57 (06) : S65 - S73
  • [9] A Primer on the Use of Equivalence Testing for Evaluating Measurement Agreement
    Dixon, Philip M.
    Saint-Maurice, Pedro F.
    Kim, Youngwon
    Hibbing, Paul
    Bai, Yang
    Welk, Gregory J.
    [J]. MEDICINE AND SCIENCE IN SPORTS AND EXERCISE, 2018, 50 (04) : 837 - 845
  • [10] A non-exercise method to determine cardiorespiratory fitness identifies females predicted to be at "high risk' of type 2 diabetes
    Gray, Benjamin J.
    Stephens, Jeffrey W.
    Turner, Daniel
    Thomas, Michael
    Williams, Sally P.
    Morgan, Kerry
    Williams, Meurig
    Rice, Sam
    Bracken, Richard M.
    [J]. DIABETES & VASCULAR DISEASE RESEARCH, 2017, 14 (01) : 47 - 54