Aqueous Two-Phase Enabled Low Viscosity 3D (LoV3D) Bioprinting of Living Matter

被引:30
作者
Becker, Malin [1 ]
Gurian, Melvin [1 ]
Schot, Maik [1 ]
Leijten, Jeroen [1 ]
机构
[1] Univ Twente, TechMed Ctr, Dept Dev BioEngn, Leijten Lab, NL-7522 NB Enschede, Netherlands
基金
欧洲研究理事会; 荷兰研究理事会;
关键词
biofabrication; biofunctionalization; embedded bioprinting; tissue engineering; vascularization; PRINTABILITY; SEPARATION; HYDROGELS; SYSTEMS; OIL;
D O I
10.1002/advs.202204609
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Embedded 3D bioprinting has great value for the freeform fabrication of living matter. However, embedded 3D bioprinting is currently limited to highly viscous liquid baths or liquid-like solid baths. In contrast, prior to crosslinking, most hydrogels are formulated as low-viscosity solutions and are therefore not directly compatible with bioprinting due to low shape fidelity and poor print stability. The authors here present a method to enable low-viscosity ink 3D (LoV3D) bioprinting, based on aqueous two-phase stabilization of the ink-bath interface. LoV3D allows for the printing of living constructs at high speeds (up to 1.8 m s(-1)) with high viability due to its exceedingly low-viscosity. Moreover, LoV3D liquid/liquid interfaces offer unique advantages for fusing printed structures, creating intricate vasculature, and modifying surfaces at higher efficiencies than traditional systems. Furthermore, the low interfacial tension of LoV3D bioprinting offers unprecedented nozzle-independent control over filament diameter via large-dimension strand-thinning, which allows for the printing of an exceptionally wide range of diameters down to the width of a single cell. Overall, LoV3D bioprinting is a unique all-aqueous approach with broad material compatibility without the need for rheological ink adaption, which opens new avenues of application in cell patterning, drug screening, engineered meat, and organ fabrication.
引用
收藏
页数:12
相关论文
共 44 条
[1]   Properties of the Binary Black Hole Merger GW150914 [J].
Abbott, B. P. ;
Abbott, R. ;
Abbott, T. D. ;
Abernathy, M. R. ;
Acernese, F. ;
Ackley, K. ;
Adams, C. ;
Adams, T. ;
Addesso, P. ;
Adhikari, R. X. ;
Adya, V. B. ;
Affeldt, C. ;
Agathos, M. ;
Agatsuma, K. ;
Aggarwal, N. ;
Aguiar, O. D. ;
Aiello, L. ;
Ain, A. ;
Ajith, P. ;
Allen, B. ;
Allocca, A. ;
Altin, P. A. ;
Anderson, S. B. ;
Anderson, W. G. ;
Arai, K. ;
Araya, M. C. ;
Arceneaux, C. C. ;
Areeda, J. S. ;
Arnaud, N. ;
Arun, K. G. ;
Ascenzi, S. ;
Ashton, G. ;
Ast, M. ;
Aston, S. M. ;
Astone, P. ;
Aufmuth, P. ;
Aulbert, C. ;
Babak, S. ;
Bacon, P. ;
Bader, M. K. M. ;
Baker, P. T. ;
Baldaccini, F. ;
Ballardin, G. ;
Ballmer, S. W. ;
Barayoga, J. C. ;
Barclay, S. E. ;
Barish, B. C. ;
Barker, D. ;
Barone, F. ;
Barr, B. .
PHYSICAL REVIEW LETTERS, 2016, 116 (24)
[2]   Development of a clay based bioink for 3D cell printing for skeletal application [J].
Ahlfeld, T. ;
Cidonio, G. ;
Kilian, D. ;
Duin, S. ;
Akkineni, A. R. ;
Dawson, J. I. ;
Yang, S. ;
Lode, A. ;
Oreffo, R. O. C. ;
Gelinsky, M. .
BIOFABRICATION, 2017, 9 (03)
[3]   Interfacial Tension Effect on Cell Partition in Aqueous Two-Phase Systems [J].
Atefi, Ehsan ;
Joshi, Ramila ;
Mann, Jay Adin, Jr. ;
Tavana, Hossein .
ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (38) :21305-21314
[4]   Separation of toxic heavy metals from its aqueous solution using environmentally benign vegetable oil as liquid membrane [J].
Bhatluri, Kamal Kumar ;
Chakraborty, Sushma ;
Manna, Mriganka Sekhar ;
Ghoshal, Aloke Kumar ;
Saha, Prabirkumar .
RSC ADVANCES, 2015, 5 (107) :88331-88338
[5]  
Boularaoui Selwa, 2020, Bioprinting, V20, pe00093, DOI 10.1016/j.bprint.2020.e00093
[6]   Ultrahigh-energy photons up to 1.4 petaelectronvolts from 12 γ-ray Galactic sources [J].
Cao, Zhen ;
Aharonian, F. A. ;
An, Q. ;
Axikegu ;
Bai, L. X. ;
Bai, Y. X. ;
Bao, Y. W. ;
Bastieri, D. ;
Bi, X. J. ;
Bi, Y. J. ;
Cai, H. ;
Cai, J. T. ;
Cao, Zhe ;
Chang, J. ;
Chang, J. F. ;
Chang, X. C. ;
Chen, B. M. ;
Chen, J. ;
Chen, L. ;
Chen, Liang ;
Chen, Long ;
Chen, M. J. ;
Chen, M. L. ;
Chen, Q. H. ;
Chen, S. H. ;
Chen, S. Z. ;
Chen, T. L. ;
Chen, X. L. ;
Chen, Y. ;
Cheng, N. ;
Cheng, Y. D. ;
Cui, S. W. ;
Cui, X. H. ;
Cui, Y. D. ;
Dai, B. Z. ;
Dai, H. L. ;
Dai, Z. G. ;
Danzengluobu ;
della Volpe, D. ;
Piazzoli, B. D' Ettorre ;
Dong, X. J. ;
Fan, J. H. ;
Fan, Y. Z. ;
Fan, Z. X. ;
Fang, J. ;
Fang, K. ;
Feng, C. F. ;
Feng, L. ;
Feng, S. H. ;
Feng, Y. L. .
NATURE, 2021, 594 (7861) :33-+
[7]   Emerging aqueous two-phase systems: from fundamentals of interfaces to biomedical applications [J].
Chao, Youchuang ;
Shum, Ho Cheung .
CHEMICAL SOCIETY REVIEWS, 2020, 49 (01) :114-142
[8]   A 3D cell printed muscle construct with tissue-derived bioink for the treatment of volumetric muscle loss [J].
Choi, Yeong-Jin ;
Jun, Young-Joon ;
Kim, Dong Yeon ;
Yi, Hee-Gyeong ;
Chae, Su-Hun ;
Kang, Junsu ;
Lee, Juyong ;
Gao, Ge ;
Kong, Jeong-Sik ;
Jang, Jinah ;
Chung, Wan Kyun ;
Rhie, Jong-Won ;
Cho, Dong-Woo .
BIOMATERIALS, 2019, 206 :160-169
[9]   Printing bone in a gel: using nanocomposite bioink to print functionalised bone scaffolds [J].
Cidonio, G. ;
Cooke, M. ;
Glinka, M. ;
Dawson, J., I ;
Grover, L. ;
Oreffo, R. O. C. .
MATERIALS TODAY BIO, 2019, 4
[10]   Progress in three-dimensional bioprinting [J].
Feinberg, Adam W. ;
Miller, Jordan S. .
MRS BULLETIN, 2017, 42 (08) :557-562