Wrinkle-mediated CVD synthesis of wafer scale Graphene/h-BN heterostructures

被引:4
作者
Dimitropoulos, Marinos [1 ,2 ]
Trakakis, George [2 ]
Androulidakis, Charalampos [2 ]
Kotsidi, Maria [1 ,2 ]
Galiotis, Costas [1 ,2 ]
机构
[1] Univ Patras, Dept Chem Engn, GR-26500 Patras, Greece
[2] Fdn Res & Technol Hellas, Inst Chem Engn Sci ICE HT, POB 1414, GR-26504 Patras, Greece
基金
欧盟地平线“2020”;
关键词
chemical vapor deposition; wrinkles; 2D heterostructures; atomic force microscopy; CHEMICAL-VAPOR-DEPOSITION; HEXAGONAL BORON-NITRIDE; LARGE-AREA; HIGH-QUALITY; SINGLE-CRYSTAL; GROWTH; COPPER; SPECTROSCOPY; PERFORMANCE; MICROSCOPY;
D O I
10.1088/1361-6528/ac98d0
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The combination of two-dimensional materials (2D) into heterostructures enables their integration in tunable ultrathin devices. For applications in electronics and optoelectronics, direct growth of wafer-scale and vertically stacked graphene/hexagonal boron nitride (h-BN) heterostructures is vital. The fundamental problem, however, is the catalytically inert nature of h-BN substrates, which typically provide a low rate of carbon precursor breakdown and consequently a poor rate of graphene synthesis. Furthermore, out-of-plane deformations such as wrinkles are commonly seen in 2D materials grown by chemical vapor deposition (CVD). Herein, a wrinkle-facilitated route is developed for the fast growth of graphene/h-BN vertical heterostructures on Cu foils. The key advantage of this synthetic pathway is the exploitation of the increased reactivity from inevitable line defects arising from the CVD process, which can act as active sites for graphene nucleation. The resulted heterostructures are found to exhibit superlubric properties with increased bending stiffness, as well as directional electronic properties, as revealed from atomic force microscopy measurements. This work offers a brand-new route for the fast growth of Gr/h-BN heterostructures with practical scalability, thus propelling applications in electronics and nanomechanical systems.
引用
收藏
页数:11
相关论文
共 87 条
[1]   Catalytic methane decomposition to boost the energy transition: Scientific and technological advancements [J].
Alves, Luis ;
Pereira, Vitor ;
Lagarteira, Tiago ;
Mendes, Adelio .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2021, 137
[2]   Non-Eulerian behavior of graphitic materials under compression [J].
Androulidakis, Ch. ;
Koukaras, E. N. ;
Hadjinicolaou, M. ;
Galiotis, C. .
CARBON, 2018, 138 :227-233
[3]   Strained hexagonal boron nitride: Phonon shift and Gruneisen parameter [J].
Androulidakis, Ch ;
Koukaras, E. N. ;
Poss, M. ;
Papagelis, K. ;
Galiotis, C. ;
Tawfick, S. .
PHYSICAL REVIEW B, 2018, 97 (24)
[4]   Wrinkling formation in simply-supported graphenes under tension and compression loadings [J].
Androulidakis, Ch. ;
Koukaras, E. N. ;
Carbone, M. G. Pastore ;
Hadjinicolaou, M. ;
Galiotis, C. .
NANOSCALE, 2017, 9 (46) :18180-18188
[5]   Thermomechanical behaviour of hexagonal boron nitride at elevated temperatures [J].
Androulidakis, Charalampos ;
Galiotis, Costas .
2D MATERIALS, 2020, 7 (04)
[6]   Tunable macroscale structural superlubricity in two-layer graphene via strain engineering [J].
Androulidakis, Charalampos ;
Koukaras, Emmanuel N. ;
Paterakis, George ;
Trakakis, George ;
Galiotis, Costas .
NATURE COMMUNICATIONS, 2020, 11 (01)
[7]   Freestanding van der Waals Heterostructures of Graphene and Transition Metal Dichalcogenides [J].
Azizi, Amin ;
Eichfeld, Sarah ;
Geschwind, Gayle ;
Zhang, Kehao ;
Jiang, Bin ;
Mukherjee, Debangshu ;
Hossain, Lorraine ;
Piasecki, Aleksander F. ;
Kabius, Bernd ;
Robinson, Joshua A. ;
Alem, Nasim .
ACS NANO, 2015, 9 (05) :4882-4890
[8]  
Backes C., 2020, 2D Mater, V7, P022001, DOI [10.1088/2053-1583/ab1e0a, DOI 10.1088/2053-1583/AB1E0A]
[9]   Role of Kinetic Factors in Chemical Vapor Deposition Synthesis of Uniform Large Area Graphene Using Copper Catalyst [J].
Bhaviripudi, Sreekar ;
Jia, Xiaoting ;
Dresselhaus, Mildred S. ;
Kong, Jing .
NANO LETTERS, 2010, 10 (10) :4128-4133
[10]   Enhanced Chemical Reactivity of Graphene Induced by Mechanical Strain [J].
Bissett, Mark A. ;
Konabe, Satoru ;
Okada, Susumu ;
Tsuji, Masaharu ;
Ago, Hiroki .
ACS NANO, 2013, 7 (11) :10335-10343