Assessment of fracture behavior of mono-carbonate (C4AcH11) bonded alumina-spinel castables by wedge splitting test

被引:7
作者
Liu, Wenjing [1 ]
Liao, Ning [1 ,2 ]
Nath, Mithun [1 ,2 ]
Li, Yawei [1 ,2 ]
Dai, Yajie [1 ,2 ]
Pan, Liping [1 ,2 ]
机构
[1] Wuhan Univ Sci & Technol, State Key Lab Refractories & Met, Wuhan 430081, Peoples R China
[2] Natl Prov Joint Engn Res Ctr High Temp Mat & Linin, Wuhan, Peoples R China
关键词
Alumina-spinel castables; Mono-carbonate; Pore structure; High-temperature wedge splitting test; Fracture behavior; REFRACTORY CASTABLES; MICROSTRUCTURAL CHANGES; ELASTIC PROPERTIES; CEMENT; TEMPERATURE; CONVERSION; STRENGTH; RESISTANCE; HYDRATION; EVOLUTION;
D O I
10.1016/j.jeurceramsoc.2023.11.011
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this study, nano CaCO3 was added to CAC to prepare mono-carbonate hydrate (C4AcH11). The mechanical properties, pore structure, and fracture behavior at high temperatures of mono-carbonate bonded alumina-spinel castables were assessed. The results showed that the plate-like mono-carbonate promotes early setting behaviors and higher demolding strength. The sintering effects of nano CaCO3 compensate for the strength decay at intermediate temperatures. Moreover, well-distributed CaO sources are essential to forming smaller and elongated CA(6) interlocking laminar structures and contribute to the refinement of pore structures (<10 <mu>m) after firing at 1600 degrees C. The fracture behavior of CAC-bonded alumina-spinel castables evaluated at 1400 degrees C shows that the deformation of fine grains/matrices and pores leads to typical nonbrittle fracture.
引用
收藏
页码:2600 / 2608
页数:9
相关论文
共 41 条
[1]  
[Anonymous], 2004, Proceedings of ALAFAR 2004, Antigua, Guatemala
[2]   Microstructural changes and evolutions of elastic properties versus temperature of alumina and alumina-magnesia refractory castables [J].
Auvray, Jean-Michel ;
Gault, Christian ;
Huger, Marc .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2008, 28 (10) :1953-1960
[3]   Evolution of elastic properties and microstructural changes versus temperature in bonding phases of alumina and alumina-magnesia refractory castables [J].
Auvray, Jean-Michel ;
Gault, Christian ;
Huger, Marc .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2007, 27 (12) :3489-3496
[4]   Calcium aluminate cement source evaluation for Al2O3-MgO refractory castables [J].
Braulio, M. A. L. ;
Morbioli, G. G. ;
Milanez, D. H. ;
Pandolfelli, V. C. .
CERAMICS INTERNATIONAL, 2011, 37 (01) :215-221
[5]   Investigation of fracture behavior of typical refractory materials up to service temperatures [J].
Brochen, Erwan ;
Dannert, Christian ;
Paul, Juliane ;
Krause, Olaf .
INTERNATIONAL JOURNAL OF CERAMIC ENGINEERING AND SCIENCE, 2022, 4 (02) :68-76
[6]   Mechanical and fracture investigation of magnesia refractories with acoustic emission-based method [J].
Dai, Yajie ;
Li, Yawei ;
Jin, Shengli ;
Harmuth, Harald ;
Wen, Yan ;
Xu, Xiaofeng .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2020, 40 (01) :181-191
[7]   Hot bending strength and creep behaviour at 1000-1400°C of high alumina refractory castables with spinel, periclase and dolomite additions [J].
Diaz, L. A. ;
Torrecillas, R. .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2009, 29 (01) :53-58
[8]   Phase development and high temperature deformation in high alumina refractory castables with dolomite additions [J].
Diaz, L. A. ;
Torrecillas, R. .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2007, 27 (01) :67-72
[9]   Thermomechanical properties and fracture mechanisms of calcium hexaluminate [J].
Domínguez, C ;
Chevalier, J ;
Torrecillas, R ;
Gremillard, L ;
Fantozzi, G .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2001, 21 (07) :907-917
[10]   Microstructure development in calcium hexaluminate [J].
Domínguez, C ;
Chevalier, J ;
Torrecillas, R ;
Fantozzi, G .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2001, 21 (03) :381-387