The t-tone chromatic number of classes of sparse graphs

被引:0
作者
Cranston, Daniel W. [1 ]
Lafayette, Hudson [2 ]
机构
[1] Virginia Commonwealth Univ, Dept Comp Sci, Richmond, VA 23284 USA
[2] Virginia Commonwealth Univ, Dept Math & Appl Math, Richmond, VA USA
来源
AUSTRALASIAN JOURNAL OF COMBINATORICS | 2023年 / 86卷
关键词
COLORINGS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a graph G and t, k E Z(+) a t-tone k-coloring of G is a function f : V (G) ? ?([k]) t) such that |f(v) n f(w)| < d(v, w) for all distinct v, w E t V (G). The t-tone chromatic number of G, denoted T-t(G), is the minimum k such that G is t -tone k -colorable. For small values of t, we prove sharp or nearly sharp upper bounds on the t -tone chromatic number of various classes of sparse graphs. In particular, we determine T-2(G) exactly when mad(G) < 12/5 and bound T-2(G), up to a small additive constant, when G is outerplanar. We also determine T-t(Cn) exactly when t ? {3, 4, 5}.
引用
收藏
页码:458 / 476
页数:19
相关论文
共 15 条
  • [1] The t-Tone Chromatic Number of Random Graphs
    Bal, Deepak
    Bennett, Patrick
    Dudek, Andrzej
    Frieze, Alan
    [J]. GRAPHS AND COMBINATORICS, 2014, 30 (05) : 1073 - 1086
  • [2] Covering planar graphs with forests
    Balogh, J
    Kochol, M
    Pluhár, A
    Yu, XX
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2005, 94 (01) : 147 - 158
  • [3] Bickle A., 2021, C NUMER
  • [4] Bickle A., 2013, Congr. Num., V217, P171
  • [5] Bickle A, 2018, UTILITAS MATHEMATICA, V106, P85
  • [6] Cooper C., 2017, Congr. Numer., V228, P199
  • [7] Cranston DW, 2013, ELECTRON J COMB, V20
  • [8] An Upper Bound for the 3-Tone Chromatic Number of Graphs with Maximum Degree 3
    Dong, Jiuying
    [J]. GRAPHS AND COMBINATORICS, 2022, 38 (05)
  • [9] Dong JY, 2018, UTILITAS MATHEMATICA, V107, P19
  • [10] Light graphs in families of outerplanar graphs
    Fabrici, Igor
    [J]. DISCRETE MATHEMATICS, 2007, 307 (7-8) : 866 - 872