SCHWARZ LEMMA FOR REAL HARMONIC FUNCTIONS ONTO SURFACES WITH NON-NEGATIVE GAUSSIAN CURVATURE

被引:0
作者
Kalaj, David [1 ]
Mateljevic, Miodrag [2 ]
Pinelis, Iosif [3 ]
机构
[1] Univ Montenegro, Fac Nat Sci & Math, Cetinjski Put bb, Podgorica, Montenegro
[2] Univ Belgrade, Fac Math, Belgrade, Serbia
[3] Michigan Technol Univ, Dept Math Sci, Michigan, MI USA
关键词
harmonic mappings; minimal surfaces;
D O I
10.1017/S0013091523000263
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Assume that f is a real rho-harmonic function of the unit disk D onto the interval (-1, 1), where rho(u v) = R(u) is a metric defined in the infinite strip (-1, 1) x R. Then we prove that vertical bar f(z)vertical bar(1-vertical bar z vertical bar(2)) 4/pi (1-f(z)(2) for all z epsilon D, provided that rho has a non-negative Gaussian curvature. This extends several results in the field and answers to a conjecture proposed by the first author in 2014. Such an inequality is not true for negatively curved metrics.
引用
收藏
页码:516 / 531
页数:16
相关论文
共 24 条
[1]   An extension of Schwarz's lemma [J].
Ahlfors, Lars V. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1938, 43 (1-3) :359-364
[2]  
Axler S., 2000, Harmonic Function Theory, Mathematics Subject Classification, p31B05
[3]  
Broder K., 2021, ARXIV
[4]   THE SCHWARZ LEMMA: AN ODYSSEY [J].
Broder, Kyle .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2022, 52 (04) :1141-1155
[5]   A SCHWARZ-LEMMA FOR HARMONIC AND HYPERBOLIC-HARMONIC FUNCTIONS IN HIGHER DIMENSIONS [J].
BURGETH, B .
MANUSCRIPTA MATHEMATICA, 1992, 77 (2-3) :283-291
[6]   The Schwarz-Pick lemma and Julia lemma for real planar harmonic mappings [J].
Chen HuaiHui .
SCIENCE CHINA-MATHEMATICS, 2013, 56 (11) :2327-2334
[7]   THE BLOCH CONSTANT OF BOUNDED HARMONIC-MAPPINGS [J].
COLONNA, F .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1989, 38 (04) :829-840
[8]  
Duren P., 2004, CAMBRIDGE TRACTS MAT
[9]  
Forstneric F., ANAL PDE
[10]  
Heinz E., 1959, Pac. J. Math, V9, P101