Astronomical image time series classification using CONVolutional attENTION (ConvEntion)

被引:2
作者
Bairouk, Anass [1 ]
Chaumont, Marc [1 ,3 ]
Fouchez, Dominique [2 ]
Paquet, Jerome [4 ,5 ]
Comby, Frederic [1 ]
Bautista, Julian
机构
[1] Univ Montpellier, Lab Comp Sci Robot & Microelect Montpellier, 161 Rue Ada, F-34095 Montpellier, France
[2] Aix Marseille Univ, Ctr Particle Phys Marseilles, CNRS, IN2P3, 163 Ave Luminy,Case 902, F-13009 Marseille, France
[3] Univ Nimes, 5 Rue Docteur Georges Salan,CS 13019, F-30021 Nimes, France
[4] Paul Valery Univ Montpellier, Grp AMIS, 3 Rte Mende, F-34090 Montpellier, France
[5] CNRS, UMR TETIS, Land Environm Remote Sensing & Spatial Informat, INRAE,CIRAD, 500 Rue Jean Francois Breton, F-34000 Montpellier, France
基金
美国安德鲁·梅隆基金会; 美国国家科学基金会;
关键词
techniques: image processing; supernovae: general; surveys; TRANSIENTS;
D O I
10.1051/0004-6361/202244657
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Aims. The treatment of astronomical image time series has won increasing attention in recent years. Indeed, numerous surveys following up on transient objects are in progress or under construction, such as the Vera Rubin Observatory Legacy Survey for Space and Time (LSST), which is poised to produce huge amounts of these time series. The associated scientific topics are extensive, ranging from the study of objects in our galaxy to the observation of the most distant supernovae for measuring the expansion of the universe. With such a large amount of data available, the need for robust automatic tools to detect and classify celestial objects is growing steadily.Methods. This study is based on the assumption that astronomical images contain more information than light curves. In this paper, we propose a novel approach based on deep learning for classifying different types of space objects directly using images. We named our approach ConvEntion, which stands for CONVolutional attENTION. It is based on convolutions and transformers, which are new approaches for the treatment of astronomical image time series. Our solution integrates spatio-temporal features and can be applied to various types of image datasets with any number of bands.Results. In this work, we solved various problems the datasets tend to suffer from and we present new results for classifications using astronomical image time series with an increase in accuracy of 13%, compared to state-of-the-art approaches that use image time series, and a 12% increase, compared to approaches that use light curves.
引用
收藏
页数:10
相关论文
共 30 条
  • [21] Pulsar Candidate Classification Using a Computer Vision Method from a Combination of Convolution and Attention
    Cai, Nannan
    Han, Jinlin
    Jing, Weicong
    Zhang, Zekai
    Zhou, Dejiang
    Chen, Xue
    RESEARCH IN ASTRONOMY AND ASTROPHYSICS, 2023, 23 (10)
  • [22] A Survey on Multivariate Time Series Imputation Using Adversarial Learning
    Richter, Anna
    Ijaradar, Jyotirmaya
    Wetzker, Ulf
    Jain, Vineeta
    Frotzscher, Andreas
    IEEE ACCESS, 2024, 12 : 148167 - 148189
  • [23] ON MACHINE-LEARNED CLASSIFICATION OF VARIABLE STARS WITH SPARSE AND NOISY TIME-SERIES DATA
    Richards, Joseph W.
    Starr, Dan L.
    Butler, Nathaniel R.
    Bloom, Joshua S.
    Brewer, John M.
    Crellin-Quick, Arien
    Higgins, Justin
    Kennedy, Rachel
    Rischard, Maxime
    ASTROPHYSICAL JOURNAL, 2011, 733 (01)
  • [24] AutoSourceID-Classifier Star-galaxy classification using a convolutional neural network with spatial information
    Stoppa, F.
    Bhattacharyya, S.
    de Austri, R. Ruiz
    Vreeswijk, P.
    Caron, S.
    Zaharijas, G.
    Bloemen, S.
    Principe, G.
    Malyshev, D.
    Vodeb, V.
    Groot, P. J.
    Cator, E.
    Nelemans, G.
    ASTRONOMY & ASTROPHYSICS, 2023, 680
  • [25] Multiwavelength classification of X-ray selected galaxy cluster candidates using convolutional neural networks
    Kosiba, Matej
    Lieu, Maggie
    Altieri, Bruno
    Clerc, Nicolas
    Faccioli, Lorenzo
    Kendrew, Sarah
    Valtchanov, Ivan
    Sadibekova, Tatyana
    Pierre, Marguerite
    Hroch, Filip
    Werner, Norbert
    Burget, Lukas
    Garrel, Christian
    Koulouridis, Elias
    Gaynullina, Evelina
    Molham, Mona
    Ramos-Ceja, Miriam E.
    Khalikova, Alina
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2020, 496 (04) : 4141 - 4153
  • [26] Fanaroff-Riley classification of radio galaxies using group-equivariant convolutional neural networks
    Scaife, Anna M. M.
    Porter, Fiona
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2021, 503 (02) : 2369 - 2379
  • [27] Application of Convolutional Neural Networks to time domain astrophysics. 2D image analysis of OGLE light curves
    Monsalves, N.
    Arancibia, M. Jaque
    Bayo, A.
    Sanchez-Saez, P.
    Angeloni, R.
    Damke, G.
    Van de Perre, J. Segura
    ASTRONOMY & ASTROPHYSICS, 2024, 691
  • [28] Robust machine learning applied to astronomical data sets. I. Star-galaxy classification of the Sloan Digital Sky Survey DR3 using decision trees
    Ball, Nicholas M.
    Brunner, Robert J.
    Myers, Adam D.
    Tcheng, David
    ASTROPHYSICAL JOURNAL, 2006, 650 (01) : 497 - 509
  • [29] TYPE Ia SUPERNOVA DISTANCE MODULUS BIAS AND DISPERSION FROM K-CORRECTION ERRORS: A DIRECT MEASUREMENT USING LIGHT CURVE FITS TO OBSERVED SPECTRAL TIME SERIES
    Saunders, C.
    Aldering, G.
    Antilogus, P.
    Aragon, C.
    Bailey, S.
    Baltay, C.
    Bongard, S.
    Buton, C.
    Canto, A.
    Cellier-Holzem, F.
    Childress, M.
    Chotard, N.
    Copin, Y.
    Fakhouri, H. K.
    Feindt, U.
    Gangler, E.
    Guy, J.
    Kerschhaggl, M.
    Kim, A. G.
    Kowalski, M.
    Nordin, J.
    Nugent, P.
    Paech, K.
    Pain, R.
    Pecontal, E.
    Pereira, R.
    Perlmutter, S.
    Rabinowitz, D.
    Rigault, M.
    Rubin, D.
    Runge, K.
    Scalzo, R.
    Smadja, G.
    Tao, C.
    Thomas, R. C.
    Weaver, B. A.
    Wu, C.
    ASTROPHYSICAL JOURNAL, 2015, 800 (01)
  • [30] High speed, on-line 4D microscopy using continuously scanning white light interferometry with a high speed camera and real-time FPGA image processing
    Montgomery, P.
    Anstotz, F.
    Montagna, J.
    OPTICAL MEASUREMENT SYSTEMS FOR INDUSTRIAL INSPECTION VII, 2011, 8082