The 0:1 resonance bifurcation associated with the supercritical Hamiltonian pitchfork bifurcation

被引:0
作者
Zhou, Xing [1 ]
机构
[1] Hunan Normal Univ, Sch Math & Stat, Key Lab Comp & Stochast Math, Minist Educ, Changsha, Hunan, Peoples R China
来源
DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL | 2023年 / 38卷 / 03期
基金
中国国家自然科学基金;
关键词
Hamiltonian bifurcation; 0:1 resonance; unfolding; invariant torus; homoclinic orbit; NONLINEAR-INTERACTIONS; GENERIC PROPERTIES; SINGULARITY THEORY; HOMOCLINIC ORBITS; SYSTEMS; DYNAMICS;
D O I
10.1080/14689367.2023.2194521
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the non-semisimple 0:1 resonance (i.e. the unperturbed equilibrium has two purely imaginary eigenvalues +/- i alpha (alpha is an element of R and alpha > 0) and a non-semisimple double-zero one) Hamiltonian bifurcation with one distinguished parameter, which corresponds to the supercritical Hamiltonian pitchfork bifurcation. Based on BCKV singularity theory established by [H.W. Broer, S. -N. Chow, Y. Kim, and G. Vegter, A normally elliptic Hamiltonian bifurcation, Z. Angew. Math. Phys. 44 (3) (1993), pp. 389-432], this bifurcation essentially triggered by the reversible universal unfolding M = 1/2 p(2) + 1/4 q(4) + (lambda + I-1)q(2) with respect to BCKV-restricted morphisms of the planar non-semisimple singularity 1/2 p(2) + 1/4 q(4) (the I-1 is regarded as distinguished parameter with respect to the external parameter lambda). We first give the plane bifurcation diagram of the integrable Hamiltonian on each level of integral in detail, which is related to the usual supercritical Hamiltonian pitchfork bifurcation. Then, we use the S-1-symmetry generated by the additional pair of imaginary eigenvalues +/- i alpha to reconstruct the above plane bifurcation phenomenon caused by the zero eigenvalue pair into the case with two degrees of freedom. Finally, we prove the persistence of typical bifurcation scenarios (e.g. 2-dimensional invariant tori and the symmetric homoclinic orbit) under the small Hamiltonian perturbations, as proposed by [H.W. Broer, S. -N. Chow, Y. Kim, and G. Vegter, A normally elliptic Hamiltonian bifurcation, Z. Angew. Math. Phys. 44 (3) (1993), pp. 389-432]. An example system (the coupled Duffing oscillator) with strong linear coupling and weak local nonlinearity is given for this bifurcation.
引用
收藏
页码:427 / 452
页数:26
相关论文
共 45 条
[1]  
[Anonymous], 1999, Applied Mathematical Sciences
[2]  
Arnold V.I., 1988, DYNAM SYST
[3]  
Arnold V. I., 1989, Mathematical Methods of Classical Mechanics
[4]  
Arnold VI, 1972, Funct Anal Appl, V6, P254
[5]  
Broer H. W., 2003, Lect. Notes Math.
[6]  
Broer H.W., 1995, NORMAL FORMS HOMOCLI, P1
[7]   A NORMALLY ELLIPTIC HAMILTONIAN BIFURCATION [J].
BROER, HW ;
CHOW, SN ;
KIM, Y ;
VEGTER, G .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1993, 44 (03) :389-432
[8]   Resonances in a spring-pendulum: algorithms for equivariant singularity theory [J].
Broer, HW ;
Hoveijn, I ;
Lunter, GA ;
Vegter, G .
NONLINEARITY, 1998, 11 (06) :1569-1605
[9]   Equivariant singularity theory with distinguished parameters: Two case studies of resonant Hamiltonian systems [J].
Broer, HW ;
Lunter, GA ;
Vegter, G .
PHYSICA D-NONLINEAR PHENOMENA, 1998, 112 (1-2) :64-80
[10]  
Buono PL, 2005, LOND MATH S, V306, P357