Satellite-derived bathymetry from correlation of Sentinel-2 spectral bands to derive wave kinematics: Qualification of Sentinel-2 S2Shores estimates with hydrographic standards

被引:5
|
作者
Almar, Rafael [1 ]
Bergsma, Erwin W. J. [2 ]
Thoumyre, Gregoire [1 ]
Solange, Lemai-Chenevier [2 ]
Loyer, Sophie [3 ]
Artigues, Stephanie [2 ]
Salles, Gregoire
Garlan, Thierry [3 ]
Lifermann, Anne [2 ]
机构
[1] Univ Toulouse, LEGOS, CNRS, CNES,IRD, 14 Av Edouard Belin, F-31400 Toulouse, France
[2] CNES, 18 Av Edouard Belin, F-31400 Toulouse, France
[3] Serv Hydrog & Oceanog Marine Shom, 13 Rue Chatellier, F-29200 Brest, France
关键词
Keyords; Optical imagery; S2Shores; Satellite to shores; Satellite-derived bathymetry; Aquitain atlantic coast; France; DEPTH INVERSION;
D O I
10.1016/j.coastaleng.2024.104458
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
There is a pressing need for a fast and efficient satellite remote sensing tool to estimate coastal bathymetry for any coastline in the world. To date, satellite methods for deriving bathymetry have mainly focused on linking the radiometric response to a known water depth, as with SPOT, Landsat and Sentinel. Here, wave properties (static and dynamic) are approximated using the small time delay between the different color bands of Sentinel-2 to then calculate a depth using wave linear dispersion theory. In this paper, we present a spatial correlation method within the S2Shores (Satellites to Shores) Python toolbox: a processing chain/toolbox of coastal observations using methods applied to optical satellites. The resulting individual bathymetries are finally qualified according to the standards of the International Hydrographic Organization, anticipating their operational use.
引用
收藏
页数:8
相关论文
共 7 条
  • [1] Estimating Satellite-Derived Bathymetry (SDB) with the Google Earth Engine and Sentinel-2
    Traganos, Dimosthenis
    Poursanidis, Dimitris
    Aggarwal, Bharat
    Chrysoulakis, Nektarios
    Reinartz, Peter
    REMOTE SENSING, 2018, 10 (06)
  • [2] Satellite-derived bathymetry combined with Sentinel-2 and ICESat-2 datasets using machine learning
    Xie, Congshuang
    Chen, Peng
    Zhang, Zhenhua
    Pan, Delu
    FRONTIERS IN EARTH SCIENCE, 2023, 11
  • [3] Radon-Augmented Sentinel-2 Satellite Imagery to Derive Wave-Patterns and Regional Bathymetry
    Bergsma, Erwin W. J.
    Almar, Rafael
    Maisongrande, Philippe
    REMOTE SENSING, 2019, 11 (16)
  • [4] On the use of Sentinel-2 for coastal habitat mapping and satellite-derived bathymetry estimation using downscaled coastal aerosol band
    Poursanidis, Dimitris
    Traganos, Dimosthenis
    Reinartz, Peter
    Chrysoulakis, Nektarios
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2019, 80 : 58 - 70
  • [5] Satellite-derived bathymetry using machine learning and optimal Sentinel-2 imagery in South-West Florida coastal waters
    Mudiyanselage, S. S. J. D.
    Abd-Elrahman, A.
    Wilkinson, B.
    Lecours, V
    GISCIENCE & REMOTE SENSING, 2022, 59 (01) : 1143 - 1158
  • [6] SHALLOW WATERS DEPTH ESTIMATION USING EMPIRICAL SATELLITE DERIVED BATHYMETRY AND SENTINEL-2 DATA, CASE STUDY: EAST COASTAL WATERS OF JAVA']JAVA ISLAND
    Gasica, T. A.
    Pratomo, D. G.
    XXIV ISPRS CONGRESS: IMAGING TODAY, FORESEEING TOMORROW, COMMISSION III, 2022, 43-B3 : 93 - 99
  • [7] MuSRFM: Multiple scale resolution fusion based precise and robust satellite derived bathymetry model for island nearshore shallow water regions using sentinel-2 multi-spectral imagery
    Qin, Xiaoming
    Wu, Ziyin
    Luo, Xiaowen
    Shang, Jihong
    Zhao, Dineng
    Zhou, Jieqiong
    Cui, Jiaxin
    Wan, Hongyang
    Xu, Guochang
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2024, 218 : 150 - 169