Some Hermite-Hadamard and midpoint type inequalities in symmetric quantum calculus

被引:6
作者
Butt, Saad Ihsan [1 ]
Aftab, Muhammad Nasim [1 ]
Nabwey, Hossam A. [2 ]
Etemad, Sina [3 ,4 ]
机构
[1] COMSATS Univ Islamabad, Dept Math, Lahore Campus, Lahore, Pakistan
[2] Prince Sattam bin Abdulaziz Univ, Coll Sci & Humanities Al Kharj, Dept Math, Al Kharj 11942, Saudi Arabia
[3] Azarbaijan Shahid Madani Univ, Dept Math, Tabriz, Iran
[4] Al Ayen Univ, Sci Res Ctr, Math Appl Sci & Engn Res Grp, Nasiriyah 64001, Iraq
来源
AIMS MATHEMATICS | 2024年 / 9卷 / 03期
关键词
Hermite-Hadamard inequality; convex functions; symmetric quantum calculus; NEWTON-TYPE INEQUALITIES; CONVEX;
D O I
10.3934/math.2024268
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Hermite-Hadamard inequalities are common research topics explored in different dimensions. For any interval [b0, b1] subset of 2Z., we construct the idea of the Hermite-Hadamard inequality, its different kinds, and its generalization in symmetric quantum calculus at b0 is an element of [b0, b1] subset of 2Z.. We also construct parallel results for the Hermite-Hadamard inequality, its different types, and its generalization on other end point b1, and provide some examples as well. Some justification with graphical analysis is provided as well. Finally, with the assistance of these outcomes, we give a midpoint type inequality and some of its approximations for convex functions in symmetric quantum calculus.
引用
收藏
页码:5523 / 5549
页数:27
相关论文
共 32 条
  • [1] q-Hermite Hadamard inequalities and quantum estimates for midpoint type inequalities via convex and quasi-convex functions
    Alp, Necmettin
    Sarikaya, Mehmet Zeki
    Kunt, Mehmet
    Iscan, Imdat
    [J]. JOURNAL OF KING SAUD UNIVERSITY SCIENCE, 2018, 30 (02) : 193 - 203
  • [2] SOME FRACTIONAL Q-INTEGRALS AND Q-DERIVATIVES
    ALSALAM, WA
    [J]. PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 1966, 15 : 135 - &
  • [3] Hahn Difference Operator and Associated Jackson-Norlund Integrals
    Annaby, M. H.
    Hamza, A. E.
    Aldwoah, K. A.
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2012, 154 (01) : 133 - 153
  • [4] Some results on quantum Hahn integral inequalities
    Asawasamrit, Suphawat
    Sudprasert, Chayapat
    Ntouyas, Sotiris K.
    Tariboon, Jessada
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2019, 2019 (1)
  • [5] On q-Hermite-Hadamard inequalities for general convex functions
    Bermudo, S.
    Korus, P.
    Napoles Valdes, J. E.
    [J]. ACTA MATHEMATICA HUNGARICA, 2020, 162 (01) : 364 - 374
  • [6] The q-symmetric variational calculus
    Brito da Cruz, Artur M. C.
    Martins, Natalia
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2012, 64 (07) : 2241 - 2250
  • [7] Budak Hüseyin, 2021, Proyecciones (Antofagasta), V40, P199, DOI 10.22199/issn.0717-6279-2021-01-0013
  • [8] Simpson and Newton type inequalities for convex functions via newly defined quantum integrals
    Budak, Huseyin
    Erden, Samet
    Ali, Muhammad Aamir
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (01) : 378 - 390
  • [9] NEW QUANTUM VARIANTS OF SIMPSON-NEWTON TYPE INEQUALITIES VIA (α, m)-CONVEXITY
    Butt, Saad Ihsan
    Ul Ain, Qurat
    Budak, Huseyin
    [J]. KOREAN JOURNAL OF MATHEMATICS, 2023, 31 (02): : 161 - 180
  • [10] New Study on the Quantum Midpoint-Type Inequalities for Twice q-Differentiable Functions via the Jensen-Mercer Inequality
    Butt, Saad Ihsan
    Umar, Muhammad
    Budak, Huseyin
    [J]. SYMMETRY-BASEL, 2023, 15 (05):