A review of nonparametric regression methods for longitudinal data

被引:0
作者
Yang, Changxin [1 ]
Zhu, Zhongyi [1 ]
机构
[1] Fudan Univ, Dept Stat & Data Sci, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
Longitudinal data; Repeated measurements; Nonparametric regression; Machine learning; Regression tree; VARYING COEFFICIENT MODELS; MIXED-EFFECTS MODELS; SEMIPARAMETRIC ESTIMATION; FUNCTIONAL DATA; CLUSTERED DATA; SPLINES; TREES;
D O I
暂无
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Longitudinal data, which involve measuring a group of subjects repeatedly over time, frequently arise in many clinical and biomedical applications. To identify the complex patterns of change in the outcome and their association with covariates over time, a sufficiently flexible model is always required. Nonparametric regression, known for being data adaptive and less restrictive than parametric approaches, becomes a promising tool for handling longitudinal data. This paper reviews various nonparametric regression methods for longitudinal data, including specific traditional non parametric methods for the univariate case and several representative methods for the multivariate case, among which tree-based techniques are dominant. We summarize their motivations and provide a brief practical performance comparison of these methods in simulations, as well as discuss potential future research directions.
引用
收藏
页码:127 / 142
页数:16
相关论文
共 50 条
  • [31] The performance of mixed truncated spline-local linear nonparametric regression model for longitudinal data
    Sriliana, Idhia
    Budiantara, I. Nyoman
    Ratnasari, Vita
    METHODSX, 2024, 12
  • [32] Switching nonparametric regression models for multi-curve data
    De Souza, Camila P. E.
    Heckman, Nancy E.
    Xu, Fan
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2017, 45 (04): : 442 - 460
  • [33] NONPARAMETRIC INDEPENDENCE SCREENING AND STRUCTURE IDENTIFICATION FOR ULTRA-HIGH DIMENSIONAL LONGITUDINAL DATA
    Cheng, Ming-Yen
    Honda, Toshio
    Li, Jialiang
    Peng, Heng
    ANNALS OF STATISTICS, 2014, 42 (05) : 1819 - 1849
  • [34] Machine and deep learning for longitudinal biomedical data: a review of methods and applications
    Anna Cascarano
    Jordi Mur-Petit
    Jerónimo Hernández-González
    Marina Camacho
    Nina de Toro Eadie
    Polyxeni Gkontra
    Marc Chadeau-Hyam
    Jordi Vitrià
    Karim Lekadir
    Artificial Intelligence Review, 2023, 56 : 1711 - 1771
  • [35] Improving nonparametric regression methods by bagging and boosting
    Borra, S
    Di Ciaccio, A
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2002, 38 (04) : 407 - 420
  • [36] Comparison of methods for monotone nonparametric multiple regression
    Strand, M
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2003, 32 (01) : 165 - 178
  • [37] Machine and deep learning for longitudinal biomedical data: a review of methods and applications
    Cascarano, Anna
    Mur-Petit, Jordi
    Hernandez-Gonzalez, Jeronimo
    Camacho, Marina
    Eadie, Nina de Toro
    Gkontra, Polyxeni
    Chadeau-Hyam, Marc
    Vitria, Jordi
    Lekadir, Karim
    ARTIFICIAL INTELLIGENCE REVIEW, 2023, 56 (SUPPL 2) : 1711 - 1771
  • [38] Semiparametric statistical inferences for longitudinal data with nonparametric covariance modelling
    Xu, Qunfang
    Bai, Yang
    STATISTICS, 2017, 51 (06) : 1280 - 1303
  • [39] Nonparametric smoothing estimates of a nonlinear mixed model with longitudinal data
    Liu, J
    Xiang, J
    AMERICAN STATISTICAL ASSOCIATION - 1996 PROCEEDINGS OF THE BIOPHARMACEUTICAL SECTION, 1996, : 267 - 269
  • [40] Backfitting and local likelihood methods for nonparametric mixed-effects models with longitudinal data
    Park, Jeong-Gun
    Wu, Hulin
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2006, 136 (11) : 3760 - 3782