Prediction of molecular mechanism of processed ginseng in the treatment of heart failure based on network pharmacology and molecular docking technology

被引:5
作者
Dai, Tingting [1 ]
Gong, Jiyu [1 ,3 ]
Liu, Shuying [2 ]
机构
[1] Changchun Univ Chinese Med, Sch Pharmaceut Sci, Changchun, Peoples R China
[2] Changchun Univ Chinese Med, Jilin Ginseng Acad, Changchun, Peoples R China
[3] Changchun Univ Chinese Med, Sch Pharmaceut Sci, Changchun 130117, Peoples R China
关键词
heart failure; molecular docking; network pharmacology; processed Panax ginseng CA Mey. products;
D O I
10.1097/MD.0000000000036576
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background: Heart failure (HF) is the most common cardiovascular disease in clinics. Processed Panax ginseng C.A. Mey. Products have significant therapeutic effects on HF. Therefore, it is of great significance to explore the mechanism of action of Processed Panax ginseng C.A. Mey. Products in the treatment of HF.Methods: The saponin-like constituents of 3 different ginseng preparations were characterized by UPLC/QE-MS and the identified saponin constituents were subjected to network pharmacological analysis. Protein-protein interaction analyses of the targets of different ginseng preparations for the treatment of heart failure (HF) were performed using the STRING database, Gene Ontology enrichment analyses and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were performed using the DAVID database, and the results of the network pharmacological analyses were validated using the Autodock software. Finally, the relative quantitative content of 5 major ginsenosides in 3 processed ginseng products was evaluated.Results: A total of 40 saponin compounds were identified based on mass spectrometry data. Network pharmacology and molecular docking analyses were used to predict the major targets of these sapions compounds and the key pathways mediating their anti-HF effects. After conducting a thorough screening, the study identified 5 primary ingredients of ginseng products ginsenoside Rh4, ginsenoside Rk3, ginsenoside Rk1, ginsenoside Rg5, and ginsenoside CK that can potentially target 22 essential proteins: EGFR, AKT1, ERBB2, STAT3, TNF, ESR1, MTOR, HRAS, MMP9, and PIK3CA, etc. Additionally, the Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed that ginseng products can be beneficial in treating HF by interacting with pathways such as the PI3K-Akt signaling pathway, the TNF signaling pathway, the mTOR signaling pathway, and others.Conclusion: The present study revealed that the treatment of HF with different processed ginseng products may be related to the regulation of the PI3K-Akt signaling pathway, TNF signaling pathway, apoptosis pathway, mTOR signaling pathway, etc, and that the key active ingredients may be concentrated in black ginseng, which provides a theoretical basis and direction for the further study of the mechanism of action of ginseng. This provides a theoretical basis and research direction for further in-depth study of its mechanism of action.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Potential Molecular Mechanism of Yishen Capsule in the Treatment of Diabetic Nephropathy Based on Network Pharmacology and Molecular Docking
    Hu, Yaling
    Liu, Shuang
    Liu, Wenyuan
    Zhang, Ziyuan
    Liu, Yuxiang
    Li, Sufen
    Sun, Dalin
    Zhang, Guang
    Fang, Jingai
    DIABETES METABOLIC SYNDROME AND OBESITY-TARGETS AND THERAPY, 2022, 15 : 943 - 962
  • [42] Molecular mechanism of Acanthopanax senticosus in the treatment of Alzheimer’s disease based on network pharmacology and molecular docking
    Feng Kuang
    Tao Xiang
    Molecular Diversity, 2023, 27 : 2849 - 2865
  • [43] Research on the mechanism of eugenol in the treatment of liver cancer based on network pharmacology, molecular docking technology, and in vitro experiments
    Liu, Kaiping
    Jiang, Jiuliang
    Yu, Zhenyu
    Wang, Yunhao
    Wang, Min
    Zhu, Haitao
    ANTI-CANCER DRUGS, 2025, 36 (03) : 177 - 189
  • [44] Study on the mechanism of action of colchicine in the treatment of coronary artery disease based on network pharmacology and molecular docking technology
    Yu, Yunfeng
    Zhou, Manli
    Long, Xi
    Yin, Shuang
    Hu, Gang
    Yang, Xinyu
    Jian, Weixiong
    Yu, Rong
    FRONTIERS IN PHARMACOLOGY, 2023, 14
  • [45] Molecular Mechanism of Ginseng-Schisandrae Herb Pair in Improving Neurodegenerative Disease on a Network Pharmacology and Molecular Docking
    Ding, Zemin
    Hong, Xia
    Li, Xiaohui
    Wang, Yueyue
    JOURNAL OF BIOLOGICAL REGULATORS AND HOMEOSTATIC AGENTS, 2023, 37 (03) : 1427 - 1441
  • [46] Molecular mechanism of Acanthopanax senticosus in the treatment of Alzheimer's disease based on network pharmacology and molecular docking
    Kuang, Feng
    Xiang, Tao
    MOLECULAR DIVERSITY, 2023, 27 (06) : 2849 - 2865
  • [47] Molecular mechanism of Ferula asafoetida for the treatment of asthma: Network pharmacology and molecular docking approach
    Qasim, Muhammad
    Abdullah, Muhammad
    Ashfaq, Usman Ali
    Noor, Fatima
    Nahid, Nazia
    Alzamami, Ahmad
    Alturki, Norah A.
    Khurshid, Mohsin
    SAUDI JOURNAL OF BIOLOGICAL SCIENCES, 2023, 30 (02)
  • [48] Study on the Mechanism of Sanqi in the Treatment of Disseminated Intravascular Coagulation-Based on Network Pharmacology and Molecular Docking Technology
    Yao, Xin
    Zhang, XiuJun
    Ma, ShaoJun
    Zheng, Chen
    Guo, YongFei
    Lu, Wei
    Ye, Kui
    LETTERS IN DRUG DESIGN & DISCOVERY, 2023, 20 (07) : 881 - 893
  • [49] Exploring the mechanism of curcumin in the treatment of doxorubicin-induced cardiotoxicity based on network pharmacology and molecular docking technology
    Hu, Zhen
    MEDICINE, 2024, 103 (07) : E36593
  • [50] Molecular mechanism of Ganji Fang in the treatment of hepatocellular carcinoma based on network pharmacology, molecular docking and experimental verification technology
    Yang, Miaolun
    Yan, Qian
    Luo, Yuehua
    Wang, Boqing
    Deng, Shicong
    Luo, Huiyan
    Ye, Baoqian
    Wang, Xiongwen
    FRONTIERS IN PHARMACOLOGY, 2023, 14