Prediction of molecular mechanism of processed ginseng in the treatment of heart failure based on network pharmacology and molecular docking technology

被引:5
|
作者
Dai, Tingting [1 ]
Gong, Jiyu [1 ,3 ]
Liu, Shuying [2 ]
机构
[1] Changchun Univ Chinese Med, Sch Pharmaceut Sci, Changchun, Peoples R China
[2] Changchun Univ Chinese Med, Jilin Ginseng Acad, Changchun, Peoples R China
[3] Changchun Univ Chinese Med, Sch Pharmaceut Sci, Changchun 130117, Peoples R China
关键词
heart failure; molecular docking; network pharmacology; processed Panax ginseng CA Mey. products;
D O I
10.1097/MD.0000000000036576
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background: Heart failure (HF) is the most common cardiovascular disease in clinics. Processed Panax ginseng C.A. Mey. Products have significant therapeutic effects on HF. Therefore, it is of great significance to explore the mechanism of action of Processed Panax ginseng C.A. Mey. Products in the treatment of HF.Methods: The saponin-like constituents of 3 different ginseng preparations were characterized by UPLC/QE-MS and the identified saponin constituents were subjected to network pharmacological analysis. Protein-protein interaction analyses of the targets of different ginseng preparations for the treatment of heart failure (HF) were performed using the STRING database, Gene Ontology enrichment analyses and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were performed using the DAVID database, and the results of the network pharmacological analyses were validated using the Autodock software. Finally, the relative quantitative content of 5 major ginsenosides in 3 processed ginseng products was evaluated.Results: A total of 40 saponin compounds were identified based on mass spectrometry data. Network pharmacology and molecular docking analyses were used to predict the major targets of these sapions compounds and the key pathways mediating their anti-HF effects. After conducting a thorough screening, the study identified 5 primary ingredients of ginseng products ginsenoside Rh4, ginsenoside Rk3, ginsenoside Rk1, ginsenoside Rg5, and ginsenoside CK that can potentially target 22 essential proteins: EGFR, AKT1, ERBB2, STAT3, TNF, ESR1, MTOR, HRAS, MMP9, and PIK3CA, etc. Additionally, the Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed that ginseng products can be beneficial in treating HF by interacting with pathways such as the PI3K-Akt signaling pathway, the TNF signaling pathway, the mTOR signaling pathway, and others.Conclusion: The present study revealed that the treatment of HF with different processed ginseng products may be related to the regulation of the PI3K-Akt signaling pathway, TNF signaling pathway, apoptosis pathway, mTOR signaling pathway, etc, and that the key active ingredients may be concentrated in black ginseng, which provides a theoretical basis and direction for the further study of the mechanism of action of ginseng. This provides a theoretical basis and research direction for further in-depth study of its mechanism of action.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Exploring the mechanism of Si-Miao-Yong-An decoction on heart failure based on molecular docking and network pharmacology
    Qiu, Han
    Zhao, Sheng-Nan
    Han, Jin-Ling
    Yu, Miao
    Wang, Ruo-Di
    Fang, Jing-Ru
    Luo, Yan-Zhu
    Zhu, Ling-Juan
    Yao, Xin-Sheng
    JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH, 2024, 26 (12) : 1502 - 1529
  • [32] Mechanism of American Ginseng Against Type 2 Diabetes Mellitus Based on Network Pharmacology & Molecular Docking
    Li, Jiaxin
    Chen, Siqi
    Wang, Bo
    Xie, Jiaming
    Wu, Xinyu
    Hu, Xinying
    Liu, Jing
    Zhang, Yi
    Wang, Junzhi
    Ge, Pengling
    LETTERS IN DRUG DESIGN & DISCOVERY, 2024, 21 (11) : 2046 - 2062
  • [33] Molecular mechanism of Rhubarb in the treatment of non-small cell lung cancer based on network pharmacology and molecular docking technology
    Tan, Ye-Ru
    Lu, Yu
    MOLECULAR DIVERSITY, 2023, 27 (03) : 1437 - 1457
  • [34] Molecular mechanism of Rhubarb in the treatment of non-small cell lung cancer based on network pharmacology and molecular docking technology
    Ye-Ru Tan
    Yu Lu
    Molecular Diversity, 2023, 27 : 1437 - 1457
  • [35] Mechanism of Radix Scutellariae in the treatment of influenza A based on network pharmacology and molecular docking
    Li, Qing
    Liu, Yuntao
    Yang, Min
    Jin, Lianshun
    Wu, Yali
    Tang, Lijuan
    He, Liuyun
    Wu, Dinghong
    Zhang, Zhongde
    ANNALS OF TRANSLATIONAL MEDICINE, 2022, 10 (06)
  • [36] Based on network pharmacology and molecular docking to predict the mechanism of TMDZ capsule in the treatment of IS
    Yang, Fengjiao
    Gu, Yun
    Yan, Ya
    Wang, Guangming
    MEDICINE, 2023, 102 (30) : E34424
  • [37] Discussion on the Antipruritic Mechanism of Qiwei Antipruritic Based on Network Pharmacology and Molecular Docking Technology
    Wang, Luoxi
    Deng, Tinghan
    Liu, Ying
    Cheng, Hongbin
    CLINICAL COSMETIC AND INVESTIGATIONAL DERMATOLOGY, 2023, 16 : 3295 - 3307
  • [38] Molecular mechanism of action of Liuwei Dihuang pill for the treatment of osteoporosis based on network pharmacology and molecular docking
    Feng, Peng
    Che, Ying
    Chen, De-Qiang
    EUROPEAN JOURNAL OF INTEGRATIVE MEDICINE, 2020, 33
  • [39] Revealing the molecular mechanism of baohuoside I for the treatment of breast cancer based on network pharmacology and molecular docking
    Mu, Junjie
    Li, Ying
    Chen, Qiuxiong
    Xiao, Yujie
    Hu, Min
    He, Ziyue
    Zeng, Jun
    Ding, Yiling
    Song, Pengyang
    He, Xiao
    Yang, Xian
    Zhang, Xue
    JOURNAL OF ETHNOPHARMACOLOGY, 2025, 337
  • [40] Molecular mechanism of Bai-Bo Formula for treatment of vitiligo based on network pharmacology and molecular docking
    Zhang, Kaibo
    Zhang, Bin
    Song, Yeqiang
    CELLULAR AND MOLECULAR BIOLOGY, 2023, 69 (05) : 19 - 25