Semi-asynchronous personalized federated learning for short-term photovoltaic power forecasting

被引:23
|
作者
Zhang, Weishan [1 ]
Chen, Xiao [1 ]
He, Ke [2 ]
Chen, Leiming [1 ]
Xu, Liang [3 ]
Wang, Xiao [4 ]
Yang, Su [5 ]
机构
[1] China Univ Petr East China, Coll Comp Sci & Technol, Dongying, Peoples R China
[2] Tsinghua Univ, Sichuan Energy Internet Res Inst, Beijing, Peoples R China
[3] Beijing Univ Sci & Technol, Sch Comp & Commun Engn, Beijing, Peoples R China
[4] Chinese Acad Sci, Inst Automat, State Key Lab Management & Control Complex Syst, Beijing, Peoples R China
[5] Fudan Univ, Sch Comp Sci, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
Photovoltaic power forecasting; Federated learning; Edge computing; CNN-LSTM;
D O I
10.1016/j.dcan.2022.03.022
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
Accurate forecasting for photovoltaic power generation is one of the key enablers for the integration of solar photovoltaic systems into power grids. Existing deep-learning-based methods can perform well if there are sufficient training data and enough computational resources. However, there are challenges in building models through centralized shared data due to data privacy concerns and industry competition. Federated learning is a new distributed machine learning approach which enables training models across edge devices while data reside locally. In this paper, we propose an efficient semi-asynchronous federated learning framework for short-term solar power forecasting and evaluate the framework performance using a CNN-LSTM model. We design a personalization technique and a semi-asynchronous aggregation strategy to improve the efficiency of the proposed federated forecasting approach. Thorough evaluations using a real-world dataset demonstrate that the federated models can achieve significantly higher forecasting performance than fully local models while protecting data privacy, and the proposed semi-asynchronous aggregation and the personalization technique can make the forecasting framework more robust in real-world scenarios.
引用
收藏
页码:1221 / 1229
页数:9
相关论文
共 50 条
  • [21] Federated Learning for Short-Term Residential Load Forecasting
    Briggs, Christopher
    Fan, Zhong
    Andras, Peter
    IEEE OPEN ACCESS JOURNAL OF POWER AND ENERGY, 2022, 9 : 573 - 583
  • [22] FedSA: A Semi-Asynchronous Federated Learning Mechanism in Heterogeneous Edge Computing
    Ma, Qianpiao
    Xu, Yang
    Xu, Hongli
    Jiang, Zhida
    Huang, Liusheng
    Huang, He
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2021, 39 (12) : 3654 - 3672
  • [23] Behave Differently when Clustering: A Semi-asynchronous Federated Learning Approach for IoT
    Fan, Boyu
    Su, Xiang
    Tarkoma, Sasu
    Hui, Pan
    ACM TRANSACTIONS ON SENSOR NETWORKS, 2024, 20 (03)
  • [24] Short-term power forecasting system for photovoltaic plants
    Alfredo Fernandez-Jimenez, L.
    Munoz-Jimenez, Andres
    Falces, Alberto
    Mendoza-Villena, Montserrat
    Garcia-Garrido, Eduardo
    Lara-Santillan, Pedro M.
    Zorzano-Alba, Enrique
    Zorzano-Santamaria, Pedro J.
    RENEWABLE ENERGY, 2012, 44 : 311 - 317
  • [25] A Blockchain-Based Auditable Semi-Asynchronous Federated Learning for Heterogeneous Clients
    Zhuohao, Qian
    Firdaus, Muhammad
    Noh, Siwan
    Rhee, Kyung-Hyune
    IEEE ACCESS, 2023, 11 : 133394 - 133412
  • [26] Collaborative Forecasting Method for Short-term Wind Power Based on Vertical Federated Learning
    Zhao H.
    Zhang Y.
    Huo W.
    Wang J.
    Wu F.
    Zhang H.
    Dianli Xitong Zidonghua/Automation of Electric Power Systems, 2023, 47 (16): : 44 - 53
  • [27] Towards a resource-efficient semi-asynchronous federated learning for heterogeneous devices
    Sasindran, Zitha
    Yelchuri, Harsha
    Prabhakar, T. V.
    2024 NATIONAL CONFERENCE ON COMMUNICATIONS, NCC, 2024,
  • [28] An integrated federated learning algorithm for short-term load forecasting
    Yang, Yang
    Wang, Zijin
    Zhao, Shangrui
    Wuc, Jinran
    ELECTRIC POWER SYSTEMS RESEARCH, 2023, 214
  • [29] An integrated federated learning algorithm for short-term load forecasting
    Yang, Yang
    Wang, Zijin
    Zhao, Shangrui
    Wu, Jinran
    ELECTRIC POWER SYSTEMS RESEARCH, 2023, 214
  • [30] A Semi-Asynchronous Decentralized Federated Learning Framework via Tree-Graph Blockchain
    Zhang, Cheng
    Xu, Yang
    Wu, Xiaowei
    Wang, En
    Jiang, Hongbo
    Zhang, Yaoxue
    IEEE INFOCOM 2024-IEEE CONFERENCE ON COMPUTER COMMUNICATIONS, 2024, : 1121 - 1130