Cross phases of temperature-gradient-driven turbulence as a model basis for I-mode particle transport

被引:2
作者
Terry, P. W. [1 ]
Newman, D. E. [2 ]
机构
[1] Univ Wisconsin Madison, Madison, WI 53706 USA
[2] Univ Alaska Fairbanks, Fairbanks, AK 99775 USA
关键词
ASDEX; PEAKING; PINCH; HEAT;
D O I
10.1063/5.0159677
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
As a model for understanding the type of transport behavior characteristic of the tokamak I mode, cross-phase physics for particle-transport is studied analytically for turbulence dominated by either ion-temperature-gradient (ITG) or electron-temperature-gradient (ETG) instability. I mode is a transport-barrier regime of reduced thermal transport but essentially unaffected particle transport. It is assumed that ITG turbulence applies to the baseline L mode, ETG to I mode, and that E x B flow shear is stronger in I mode, lowering all fluxes. In ITG turbulence, particle transport is governed by trapped electrons. Sensitivity to collisions produces the well-known temperature-gradient-driven pinch that offsets density-gradient-driven outward diffusion, weakening particle transport in L mode. In ETG turbulence, nonadiabatic ions are collisionless. Nonzero transport requires an ion spectrum feature whose magnetic-drift resonance supplies the necessary cross phase. If frequencies of order the ion diamagnetic drift frequency dominate the ion part of the spectrum, as would occur with weakly unstable ITG turbulence, all components of the particle transport are outward and can offset flow-shear-induced flux reductions to produce a flux that is similar to the ITG L-mode particle flux. Nonlinear frequencies are potentially relevant and discussed in relation to I mode.
引用
收藏
页数:9
相关论文
共 42 条
[1]   Signature of a universal statistical description for drift-wave plasma turbulence [J].
Anderson, Johan ;
Xanthopoulos, Pavlos .
PHYSICS OF PLASMAS, 2010, 17 (11)
[2]   Density peaking, anomalous pinch, and collisionality in tokamak plasmas [J].
Angioni, C ;
Peeters, AG ;
Pereverzev, GV ;
Ryter, F ;
Tardini, G .
PHYSICAL REVIEW LETTERS, 2003, 90 (20) :4-205003
[3]   Theory-based modeling of particle transport in ASDEX Upgrade H-mode plasmas, density peaking, anomalous pinch and collisionality [J].
Angioni, C ;
Peeters, AG ;
Pereverzev, GV ;
Ryter, F ;
Tardini, G .
PHYSICS OF PLASMAS, 2003, 10 (08) :3225-3239
[4]   Edge turbulence measurements in L-mode and I-mode at ASDEX Upgrade [J].
Bielajew, R. ;
Conway, G. D. ;
Griener, M. ;
Happel, T. ;
Hoefler, K. ;
Howard, N. T. ;
Hubbard, A. E. ;
McCarthy, W. ;
Cabrera, P. A. Molina ;
Nishizawa, T. ;
Rodriguez-Fernandez, P. ;
Silvagni, D. ;
Vanovac, B. ;
Wendler, D. ;
Yoo, C. ;
White, A. E. .
PHYSICS OF PLASMAS, 2022, 29 (05)
[5]   ION-MIXING MODE AND MODEL FOR DENSITY RISE IN CONFINED PLASMAS [J].
COPPI, B ;
SPIGHT, C .
PHYSICAL REVIEW LETTERS, 1978, 41 (08) :551-554
[6]   Theoretical explanation of I-mode impurity removal and energy confinement [J].
Espinosa, Silvia ;
Catto, Peter J. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2018, 60 (09)
[7]   Density profile peaking in low collisionality H-modes: comparison of Alcator C-Mod data to ASDEX Upgrade/JET scalings [J].
Greenwald, M. ;
Angioni, C. ;
Hughes, J. W. ;
Terry, J. ;
Weisen, H. .
NUCLEAR FUSION, 2007, 47 (09) :L26-L29
[8]  
Hammett G., 2007, UCLA Winter School
[9]   Turbulence intermittency linked to the weakly coherent mode in ASDEX Upgrade I-mode plasmas [J].
Happel, T. ;
Manz, P. ;
Ryter, F. ;
Hennequin, P. ;
Hetzenecker, A. ;
Conway, G. D. ;
Guimarais, L. ;
Honore, C. ;
Stroth, U. ;
Viezzer, E. .
NUCLEAR FUSION, 2016, 56 (06)
[10]   Role of subdominant stable modes in plasma microturbulence [J].
Hatch, D. R. ;
Terry, P. W. ;
Jenko, F. ;
Merz, F. ;
Pueschel, M. J. ;
Nevins, W. M. ;
Wang, E. .
PHYSICS OF PLASMAS, 2011, 18 (05)