Deep attention sampling hashing for efficient image retrieval

被引:2
|
作者
Feng, Hao [1 ]
Wang, Nian [2 ]
Zhao, Fa [2 ]
Huo, Wei [2 ]
机构
[1] Anhui Univ Finance & Econ, Sch Management Sci & Engn, Bengbu 233030, Anhui, Peoples R China
[2] Anhui Univ, Sch Elect & Informat Engn, Hefei 230601, Anhui, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Image retrieval; Deep hashing; Attention; Knowledge distillation; QUANTIZATION; CODES;
D O I
10.1016/j.neucom.2023.126764
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Hashing has received broad attention in large-scale image retrieval due to its appealing efficiency in computation and storage. Particularly, with the drawn of deep learning, much efforts have been directed towards using deep neural networks to learn feature representations and hash codes simultaneously, and the developed deep hashing methods have shown superior performance over conventional hashing methods. In this paper, we propose Deep Attention Sampling Hashing (DASH), a novel deep hashing method that yields high-quality hash codes to enable efficient image retrieval. Specifically, we employ two sub-networks in DASH, i.e., a master branch and a part branch, to capture global structure features and discriminative feature representations, respectively. Furthermore, we develop an Attention Sampler Module (ASM), which consists of an Object Region Extraction (ORE) block and an Informative Patch Generation (IPG) block, to yield richer informative image patches. The ORE block provides a well-designed multi-scale attentional fusion mechanism to highlight and extract the significant regions of images, and the IPG block employs a direction -specific shift mechanism to generate desired image patches with discriminative details. Both blocks could be seamlessly integrated into various convolutional neural network (CNN) architectures. Subsequently, we conduct knowledge distillation optimization to transfer the details learned by the part branch into the master branch to guide hash code learning. In addition, we design a Weibull quantization loss to minimize the information loss caused by binary quantization. The experimental results on three benchmark datasets demonstrate the effectiveness of the proposed DASH with respect to different evaluation metrics.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] TDHPPIR: An Efficient Deep Hashing Based Privacy-Preserving Image Retrieval Method
    Zhang, Chengyuan
    Zhu, Lei
    Zhang, Shichao
    Yu, Weiren
    NEUROCOMPUTING, 2020, 406 : 386 - 398
  • [42] Deep collaborative graph hashing for discriminative image retrieval
    Zhang, Zheng
    Wang, Jianning
    Zhu, Lei
    Luo, Yadan
    Lu, Guangming
    PATTERN RECOGNITION, 2023, 139
  • [43] Deep internally connected transformer hashing for image retrieval
    Chao, Zijian
    Cheng, Shuli
    Li, Yongming
    KNOWLEDGE-BASED SYSTEMS, 2023, 279
  • [44] Deep hashing with top similarity preserving for image retrieval
    Qiang Li
    Haiyan Fu
    Xiangwei Kong
    Qi Tian
    Multimedia Tools and Applications, 2018, 77 : 24121 - 24141
  • [45] Deep hashing with top similarity preserving for image retrieval
    Li, Qiang
    Fu, Haiyan
    Kong, Xiangwei
    Tian, Qi
    MULTIMEDIA TOOLS AND APPLICATIONS, 2018, 77 (18) : 24121 - 24141
  • [46] Deep Top Similarity Preserving Hashing for Image Retrieval
    Li, Qiang
    Fu, Haiyan
    Kong, Xiangwei
    IMAGE AND GRAPHICS (ICIG 2017), PT II, 2017, 10667 : 206 - 215
  • [47] Deep Multi-Label Hashing for Image Retrieval
    Zhong, Xian
    Li, Jiachen
    Huang, Wenxin
    Xie, Liang
    2019 IEEE 31ST INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2019), 2019, : 1245 - 1251
  • [48] Deep Self-Adaptive Hashing for Image Retrieval
    Lin, Qinghong
    Chen, Xiaojun
    Zhang, Qin
    Tian, Shangxuan
    Chen, Yudong
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, CIKM 2021, 2021, : 1028 - 1037
  • [49] Supervised deep hashing for scalable face image retrieval
    Tang, Jinhui
    Li, Zechao
    Zhu, Xiang
    PATTERN RECOGNITION, 2018, 75 : 25 - 32
  • [50] Multi-Proxy Deep Hashing for Image Retrieval
    Zhang, Dapeng
    Guo, Gongde
    Wang, Hui
    Zhang, Jiawen
    PROCEEDINGS OF 2024 ACM ICMR WORKSHOP ON MULTIMODAL VIDEO RETRIEVAL, ICMR-MVR 2024, 2024, : 33 - 38