Large Deviation Estimates of Selberg's Central Limit Theorem and Applications

被引:3
作者
Arguin, Louis-Pierre [1 ,2 ]
Bailey, Emma [2 ]
机构
[1] CUNY, Baruch Coll, Dept Math, New York, NY 10017 USA
[2] CUNY, Dept Math, Grad Ctr, New York, NY 10017 USA
关键词
RIEMANN ZETA-FUNCTION;
D O I
10.1093/imrn/rnad176
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For V similar to alpha log log T with0 < alpha < 2, weprove 1/T meas{t is an element of[T, 2T] : log |zeta(1/2 + it)| > V} << 1/root log log T e(-V2/log log) (T). This improves prior results of Soundararajan and of Harper on the large deviations of Selberg's Central Limit Theorem in that range, without the use of the Riemann hypothesis. The result implies the sharp upper bound for the fractional moments of the Riemann zeta function proved by Heap, Radziwill, and Soundararajan. It also shows a new upper bound for the maximum of the zeta function on short intervals of length (log T)(0), 0 < theta < 3, that is expected to be sharp for 0 > 0. Finally, it yields a sharp upper bound (to order one) for the moments on short intervals, below and above the freezing transition. The proof is an adaptation of the recursive scheme introduced by Bourgade, Radziwill, and one of the authors to prove fine asymptotics for the maximum on intervals of length 1.
引用
收藏
页码:20574 / 20612
页数:39
相关论文
共 36 条
  • [1] Evidence of Random Matrix Corrections for the Large Deviations of Selberg's Central Limit Theorem
    Amzallag, E.
    Arguin, L. -P.
    Bailey, E.
    Huib, K.
    Rao, R.
    [J]. EXPERIMENTAL MATHEMATICS, 2024, 33 (01) : 123 - 135
  • [2] Arguin L.-P., 2023, PREPRINT
  • [3] Arguin L.-P., 2020, PREPRINT
  • [4] Arguin L.-P., 2021, ANN I HENRI POINCARE
  • [5] MOMENTS OF THE RIEMANN ZETA FUNCTION ON SHORT INTERVALS OF THE CRITICAL LINE
    Arguin, Louis-Pierre
    Ouimet, Frederic
    Radziwill, Maksym
    [J]. ANNALS OF PROBABILITY, 2021, 49 (06) : 3106 - 3141
  • [6] Maximum of the Riemann Zeta Function on a Short Interval of the Critical Line
    Arguin, Louis-Pierre
    Belius, David
    Bourgade, Paul
    Radziwill, Maksym
    Soundararajan, Kannan
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2019, 72 (03) : 500 - 535
  • [7] MAXIMA OF A RANDOMIZED RIEMANN ZETA FUNCTION, AND BRANCHING RANDOM WALKS
    Arguin, Louis-Pierre
    Belius, David
    Harper, Adam J.
    [J]. ANNALS OF APPLIED PROBABILITY, 2017, 27 (01) : 178 - 215
  • [8] Maxima of log-correlated fields: some recent developments*
    Bailey, E. C.
    Keating, J. P.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2022, 55 (05)
  • [9] Bovier A, 2017, CAM ST AD M, V163, P1, DOI 10.1017/9781316675779
  • [10] Bovier A, 2002, ANN PROBAB, V30, P605