Obstacle problem for a stochastic conservation law and Lewy Stampacchia inequality

被引:2
作者
Biswas, Imran H. [1 ]
Tahraoui, Yassine [2 ]
Vallet, Guy [3 ]
机构
[1] TIFR Ctr Applicable Math, Bangalore 560065, India
[2] Ctr Math & Applicat NOVA Math, NOVA SST, Lisbon, Portugal
[3] Univ Pau, UMR 5142, LMAP, F-64013 Pau, France
关键词
Conservation laws; Stochastic PDE; Obstacle problem; Lewy-Stampacchia; CAUCHY-PROBLEM; UNIQUENESS; EXISTENCE; WEAK;
D O I
10.1016/j.jmaa.2023.127356
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Our interest in this paper evolves around rigorous mathematical formalisation of obstacle problem for stochastic conservation laws. We formulate a stochastic entropy solution framework for a bilateral obstacle problem and establish well-posedness. Our method primarily relies on a combination of techniques involving penalization and regularisation by viscous/parabolic perturbation. In tandem with Kruzkhov's doubling of the variables method, this combination manifests itself via Lagrange multipliers and we are able to obtain existence and uniqueness of entropy solution. (c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:39
相关论文
共 19 条
[1]  
Amorim P., 2017, SOLVABILITY ANN I HE, V34, P221
[2]   A global existence and uniqueness result for a stochastic Allen-Cahn equation with constraint [J].
Bauzet, C. ;
Bonetti, E. ;
Bonfanti, G. ;
Lebon, F. ;
Vallet, G. .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (14) :5241-5261
[3]   The Dirichlet problem for a conservation law with a multiplicative stochastic perturbation [J].
Bauzet, Caroline ;
Vallet, Guy ;
Wittbold, Petra .
JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 266 (04) :2503-2545
[4]   THE CAUCHY PROBLEM FOR CONSERVATION LAWS WITH A MULTIPLICATIVE STOCHASTIC PERTURBATION [J].
Bauzet, Caroline ;
Vallet, Guy ;
Wittbold, Petra .
JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2012, 9 (04) :661-709
[5]   A MODEL FOR THE EVOLUTION OF TRAFFIC JAMS IN MULTI-LANE [J].
Berthelin, Florent ;
Broizat, Damien .
KINETIC AND RELATED MODELS, 2012, 5 (04) :697-728
[6]   Stochastic conservation laws: Weak-in-time formulation and Strong entropy condition [J].
Biswas, Imran H. ;
Majee, Ananta K. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 267 (07) :2199-2252
[7]   THE OBSTACLE PROBLEM FOR QUASILINEAR STOCHASTIC PDES: ANALYTICAL APPROACH [J].
Denis, Laurent ;
Matoussi, Anis ;
Zhang, Jing .
ANNALS OF PROBABILITY, 2014, 42 (03) :865-905
[8]  
EYMARD R, 1995, CHINESE ANN MATH B, V16, P1
[9]   Lewy-Stampacchia's inequality for a pseudomonotone parabolic problem [J].
Guibe, Olivier ;
Mokrane, A. ;
Tahraoui, Y. ;
Vallet, G. .
ADVANCES IN NONLINEAR ANALYSIS, 2020, 9 (01) :591-612
[10]  
Krylov N. V., 1979, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., V14, P256