StfMLP: Spatiotemporal Fusion Multilayer Perceptron for Remote-Sensing Images

被引:18
作者
Chen, Guangsheng [1 ]
Lu, Hailiang [1 ]
Di, Donglin [2 ]
Li, Linhui [1 ]
Emam, Mahmoud [3 ]
Jing, Weipeng [1 ]
机构
[1] Northeast Forestry Univ, Coll Informat & Comp Engn, Harbin 150040, Peoples R China
[2] Shenzhen SailYond Technol Co Ltd, Shenzhen 518000, Peoples R China
[3] Menoufia Univ, Fac Artificial Intelligence, Shibin Al Kawm 32511, Egypt
基金
中国国家自然科学基金;
关键词
Data fusion; multilayer perceptron (MLP); remote-sensing (RS) images; spatiotemporal fusion multilayer perceptron (StfMLP); transductive learning; REFLECTANCE FUSION; LANDSAT;
D O I
10.1109/LGRS.2022.3230720
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Remote-sensing (RS) images with high spatial and temporal resolutions play a significant role in monitoring periodic landscape changes for earth observation science. To enrich RS images, spatiotemporal fusion (STF) is considered a promising approach. The key challenge in the current STF-based methods is the requirement for large-scale data. In this work, we propose a deep-learning-based method called spatiotemporal fusion multilayer perceptron (StfMLP) to tackle this challenge. First, our method focuses on the given data in the manner of transductive learning. Second, we propose a designed multilayer perceptron (MLP) model to capture the time dependency and consistency among the input images. Consequently, StfMLP is capable of simultaneously achieving more accurate fusion and requiring a small-scale of data. We conduct extensive experiments on two widely adopted public datasets, namely Coleambally irrigation area (CIA) and the lower Gwydir catchment (LGC). The experimental results demonstrate that the proposed method outperforms the state-of-the-art methods effectively. Code, trained model, and cropped images are available online (https://github.com/luhailaing-max/StfMLP-master).
引用
收藏
页数:5
相关论文
共 27 条
[11]   Spatio-temporal fusion for remote sensing data: an overview and new benchmark [J].
Li, Jun ;
Li, Yunfei ;
He, Lin ;
Chen, Jin ;
Plaza, Antonio .
SCIENCE CHINA-INFORMATION SCIENCES, 2020, 63 (04)
[12]   Context-Aware Attentional Graph U-Net for Hyperspectral Image Classification [J].
Lin, Moule ;
Jing, Weipeng ;
Di, Donglin ;
Chen, Guangsheng ;
Song, Houbing .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
[13]   Feature Pyramid Networks for Object Detection [J].
Lin, Tsung-Yi ;
Dollar, Piotr ;
Girshick, Ross ;
He, Kaiming ;
Hariharan, Bharath ;
Belongie, Serge .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :936-944
[14]   StfNet: A Two-Stream Convolutional Neural Network for Spatiotemporal Image Fusion [J].
Liu, Xun ;
Deng, Chenwei ;
Chanussot, Jocelyn ;
Hong, Danfeng ;
Zhao, Baojun .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (09) :6552-6564
[15]   Fast and Accurate Spatiotemporal Fusion Based Upon Extreme Learning Machine [J].
Liu, Xun ;
Deng, Chenwei ;
Wang, Shuigen ;
Huang, Guang-Bin ;
Zhao, Baojun ;
Lauren, Paula .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2016, 13 (12) :2039-2043
[16]  
Shu YY, 2022, Arxiv, DOI arXiv:2208.00617
[17]   Spatiotemporal Satellite Image Fusion Using Deep Convolutional Neural Networks [J].
Song, Huihui ;
Liu, Qingshan ;
Wang, Guojie ;
Hang, Renlong ;
Huang, Bo .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2018, 11 (03) :821-829
[18]  
Tan Z., 2022, IEEE Transactions on Geoscience and Remote Sensing, V60, P1
[19]  
Tolstikhin I, 2021, ADV NEUR IN, V34
[20]   Evaluation of Landsat and MODIS data fusion products for analysis of dryland forest phenology [J].
Walker, J. J. ;
de Beurs, K. M. ;
Wynne, R. H. ;
Gao, F. .
REMOTE SENSING OF ENVIRONMENT, 2012, 117 :381-393