StfMLP: Spatiotemporal Fusion Multilayer Perceptron for Remote-Sensing Images

被引:18
作者
Chen, Guangsheng [1 ]
Lu, Hailiang [1 ]
Di, Donglin [2 ]
Li, Linhui [1 ]
Emam, Mahmoud [3 ]
Jing, Weipeng [1 ]
机构
[1] Northeast Forestry Univ, Coll Informat & Comp Engn, Harbin 150040, Peoples R China
[2] Shenzhen SailYond Technol Co Ltd, Shenzhen 518000, Peoples R China
[3] Menoufia Univ, Fac Artificial Intelligence, Shibin Al Kawm 32511, Egypt
基金
中国国家自然科学基金;
关键词
Data fusion; multilayer perceptron (MLP); remote-sensing (RS) images; spatiotemporal fusion multilayer perceptron (StfMLP); transductive learning; REFLECTANCE FUSION; LANDSAT;
D O I
10.1109/LGRS.2022.3230720
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Remote-sensing (RS) images with high spatial and temporal resolutions play a significant role in monitoring periodic landscape changes for earth observation science. To enrich RS images, spatiotemporal fusion (STF) is considered a promising approach. The key challenge in the current STF-based methods is the requirement for large-scale data. In this work, we propose a deep-learning-based method called spatiotemporal fusion multilayer perceptron (StfMLP) to tackle this challenge. First, our method focuses on the given data in the manner of transductive learning. Second, we propose a designed multilayer perceptron (MLP) model to capture the time dependency and consistency among the input images. Consequently, StfMLP is capable of simultaneously achieving more accurate fusion and requiring a small-scale of data. We conduct extensive experiments on two widely adopted public datasets, namely Coleambally irrigation area (CIA) and the lower Gwydir catchment (LGC). The experimental results demonstrate that the proposed method outperforms the state-of-the-art methods effectively. Code, trained model, and cropped images are available online (https://github.com/luhailaing-max/StfMLP-master).
引用
收藏
页数:5
相关论文
共 27 条
[1]   Multitemporal fusion of Landsat/TM and ENVISAT/MERIS for crop monitoring [J].
Amoros-Lopez, Julia ;
Gomez-Chova, Luis ;
Alonso, Luis ;
Guanter, Luis ;
Zurita-Milla, Raul ;
Moreno, Jose ;
Camps-Valls, Gustavo .
INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2013, 23 :132-141
[2]   Dynamic monitoring of the Poyang Lake wetland by integrating Landsat and MODIS observations [J].
Chen, Bin ;
Chen, Lifan ;
Huang, Bo ;
Michishita, Ryo ;
Xu, Bing .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2018, 139 :75-87
[3]   DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs [J].
Chen, Liang-Chieh ;
Papandreou, George ;
Kokkinos, Iasonas ;
Murphy, Kevin ;
Yuille, Alan L. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) :834-848
[4]  
Deng M., 2019, ARXIV
[5]   Assessing the accuracy of blending Landsat-MODIS surface reflectances in two landscapes with contrasting spatial and temporal dynamics: A framework for algorithm selection [J].
Emelyanova, Irina V. ;
McVicar, Tim R. ;
Van Niel, Thomas G. ;
Li, Ling Tao ;
van Dijk, Albert I. J. M. .
REMOTE SENSING OF ENVIRONMENT, 2013, 133 :193-209
[6]   On the blending of the Landsat and MODIS surface reflectance: Predicting daily Landsat surface reflectance [J].
Gao, Feng ;
Masek, Jeff ;
Schwaller, Matt ;
Hall, Forrest .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2006, 44 (08) :2207-2218
[7]  
He KM, 2014, LECT NOTES COMPUT SC, V8691, P346, DOI [arXiv:1406.4729, 10.1007/978-3-319-10578-9_23]
[8]   A new data fusion model for high spatial- and temporal-resolution mapping of forest disturbance based on Landsat and MODIS [J].
Hilker, Thomas ;
Wulder, Michael A. ;
Coops, Nicholas C. ;
Linke, Julia ;
McDermid, Greg ;
Masek, Jeffrey G. ;
Gao, Feng ;
White, Joanne C. .
REMOTE SENSING OF ENVIRONMENT, 2009, 113 (08) :1613-1627
[9]   An Augmented Linear Mixing Model to Address Spectral Variability for Hyperspectral Unmixing [J].
Hong, Danfeng ;
Yokoya, Naoto ;
Chanussot, Jocelyn ;
Zhu, Xiao Xiang .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019, 28 (04) :1923-1938
[10]   Spatiotemporal Reflectance Fusion via Sparse Representation [J].
Huang, Bo ;
Song, Huihui .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2012, 50 (10) :3707-3716