Segmentation of farmlands in aerial images by deep learning framework with feature fusion and context aggregation modules

被引:13
作者
Khan, Sultan Daud [1 ]
Alarabi, Louai [2 ]
Basalamah, Saleh [3 ]
机构
[1] Natl Univ Technol, Dept Comp Sci, Islamabad, Pakistan
[2] Umm Al Qura Univ, Dept Comp Sci, Mecca, Saudi Arabia
[3] Umm Al Qura Univ, Dept Comp Engn, Mecca, Saudi Arabia
关键词
Smart farming; Agriculture; Semantic segmentation; Deep learning; Aerial images; UNET PLUS PLUS; SEMANTIC SEGMENTATION; AGRICULTURE;
D O I
10.1007/s11042-023-14962-5
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Automated segmentation of farmland patterns in high resolution aerial images is very crucial for smart farming. Recently, deep learning techniques have achieved tremendous success in various semantic segmentation tasks, however, little efforts have been made in farmland semantic segmentation in high resolution aerial images. Farmland semantic segmentation in aerial images is a challenging task due to large variation in scales and shapes of agriculture patterns. Furthermore, different agriculture patterns share similar visual features that usually result in mis-classifications of pixels. To efficiently tackle these problems, we propose a deep learning framework that captures scene context and aggregate multi-scale information from different convolutional blocks. Generally, the framework consists of two main modules:(1) feature fusion module and (2) global contextual module. Feature fusion module combines the feature maps of different convolutional blocks to capture wide variation in object scales, while global contextual module aggregate rich contextual information from different regions of the image by employing pyramid pooling module. We gauge the performance of proposed framework on challenging benchmarks dataset, Agriculture-vision and also compare our results with various state-of-the-art methods. From experiment results, we demonstrate that the proposed framework achieves best performance in identifying various complex agriculture patterns and supersedes state-of-the-art methods.
引用
收藏
页码:42353 / 42372
页数:20
相关论文
共 87 条
  • [21] Dual Attention Network for Scene Segmentation
    Fu, Jun
    Liu, Jing
    Tian, Haijie
    Li, Yong
    Bao, Yongjun
    Fang, Zhiwei
    Lu, Hanqing
    [J]. 2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 3141 - 3149
  • [22] An IoT based smart irrigation management system using Machine learning and open source technologies
    Goap, Amarendra
    Sharma, Deepak
    Shukla, A. K.
    Krishna, C. Rama
    [J]. COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2018, 155 : 41 - 49
  • [23] SheepIT, an E-Shepherd System for Weed Control in Vineyards: Experimental Results and Lessons Learned
    Goncalves, Pedro
    Nobrega, Luis
    Monteiro, Antonio
    Pedreiras, Paulo
    Rodrigues, Pedro
    Esteves, Fernando
    [J]. ANIMALS, 2021, 11 (09):
  • [24] Geospatial Object Detection in High Resolution Satellite Images Based on Multi-Scale Convolutional Neural Network
    Guo, Wei
    Yang, Wen
    Zhang, Haijian
    Hua, Guang
    [J]. REMOTE SENSING, 2018, 10 (01)
  • [25] A review of semantic segmentation using deep neural networks
    Guo, Yanming
    Liu, Yu
    Georgiou, Theodoros
    Lew, Michael S.
    [J]. INTERNATIONAL JOURNAL OF MULTIMEDIA INFORMATION RETRIEVAL, 2018, 7 (02) : 87 - 93
  • [26] RescueNet: Joint Building Segmentation and Damage Assessment from Satellite Imagery
    Gupta, Rohit
    Shah, Mubarak
    [J]. 2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 4405 - 4411
  • [27] He KM, 2020, IEEE T PATTERN ANAL, V42, P386, DOI [10.1109/ICCV.2017.322, 10.1109/TPAMI.2018.2844175]
  • [28] Deep Residual Learning for Image Recognition
    He, Kaiming
    Zhang, Xiangyu
    Ren, Shaoqing
    Sun, Jian
    [J]. 2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 770 - 778
  • [29] Hybrid first and second order attention Unet for building segmentation in remote sensing images
    He, Nanjun
    Fang, Leyuan
    Plaza, Antonio
    [J]. SCIENCE CHINA-INFORMATION SCIENCES, 2020, 63 (04)
  • [30] Densely Connected Convolutional Networks
    Huang, Gao
    Liu, Zhuang
    van der Maaten, Laurens
    Weinberger, Kilian Q.
    [J]. 30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 2261 - 2269