Sensing-transducing coupled piezoelectric textiles for self-powered humidity detection and wearable biomonitoring

被引:190
作者
Su, Yuanjie [1 ]
Liu, Yulin [1 ]
Li, Weixiong [1 ]
Xiao, Xiao [2 ]
Chen, Chunxu [1 ]
Lu, Haijun [1 ]
Yuan, Zhen [1 ]
Tai, Huiling [1 ]
Jiang, Yadong [1 ]
Zou, Jie [1 ,3 ]
Xie, Guangzhong [1 ]
Chen, Jun [2 ]
机构
[1] Univ Elect Sci & Technol China, Sch Optoelect Sci & Engn, State Key Lab Elect Thin Films & Integrated Device, Chengdu 610054, Peoples R China
[2] Univ Calif Los Angeles, Dept Bioengn, Los Angeles, CA 90095 USA
[3] Ningbo Univ, Fac Elect Engn & Comp Sci, Ningbo 315211, Peoples R China
基金
中国国家自然科学基金;
关键词
SENSOR; FILMS;
D O I
10.1039/d2mh01466a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The performance of chemical sensors is dominated by the perception of the target molecules via sensitive materials and the conduction of sensing signals through transducers. However, sensing and transduction are spatially and temporally independent in most chemical sensors, which poses a challenge for device miniaturization and integration. Herein, we proposed a sensing-transducing coupled strategy by embedding the high piezoresponse Sm-PMN-PT ceramic (d(33) = similar to 1500 pC N-1) into a moisture-sensitive polyetherimide (PEI) polymer matrix via electrospinning to conjugate the humidity perception and signal transduction synchronously and sympatrically. Through phase-field simulation and experimental characterization, we reveal the principle of design of the composition and topological structure of sensing-transducing coupled piezoelectric (STP) textiles in order to modulate the recognition, conversion, and sensitive component utilization ratio of the prepared active humidity sensors, achieving high sensitivity (0.9%/RH%) and fast response (20 s) toward ambient moisture. The prepared STP textile can be worn on the human body to realize emotion recognition, exercise status monitoring, and physiological stress identification. This work offers unprecedented insights into the coupling mechanism between chemisorption-related interfacial state and energy conversion efficiency and opens up a new paradigm for developing autonomous, multifunctional and highly sensitive flexible chemical sensors.
引用
收藏
页码:842 / 851
页数:11
相关论文
共 46 条
[1]   Ni-Co-P hollow nanobricks enabled humidity sensor for respiratory analysis and human-machine interfacing [J].
Chen, Chunxu ;
Jiang, Mingjiao ;
Luo, Xiaolan ;
Tai, Huiling ;
Jiang, Yadong ;
Yang, Min ;
Xie, Guangzhong ;
Su, Yuanjie .
SENSORS AND ACTUATORS B-CHEMICAL, 2022, 370
[2]   Electronic Textiles for Wearable Point-of-Care Systems [J].
Chen, Guorui ;
Xiao, Xiao ;
Zhao, Xun ;
Tat, Trinny ;
Bick, Michael ;
Chen, Jun .
CHEMICAL REVIEWS, 2022, 122 (03) :3259-3291
[3]   Smart Textiles for Electricity Generation [J].
Chen, Guorui ;
Li, Yongzhong ;
Bick, Michael ;
Chen, Jun .
CHEMICAL REVIEWS, 2020, 120 (08) :3668-3720
[4]   Humidity sensors: A review of materials and mechanisms [J].
Chen, Z ;
Lu, C .
SENSOR LETTERS, 2005, 3 (04) :274-295
[5]   Recent Progress on Piezoelectric, Pyroelectric, and Magnetoelectric Polymer-Based Energy-Harvesting Devices [J].
Costa, Pedro ;
Nunes-Pereira, Joao ;
Pereira, Nelson ;
Castro, Nelson ;
Goncalves, Sergio ;
Lanceros-Mendez, Senentxu .
ENERGY TECHNOLOGY, 2019, 7 (07)
[6]   Facile, Flexible, Cost-Saving, and Environment-Friendly Paper-Based Humidity Sensor for Multifunctional Applications [J].
Duan, Zaihua ;
Jiang, Yadong ;
Yan, Mingguo ;
Wang, Si ;
Yuan, Zhen ;
Zhao, Qiuni ;
Sun, Ping ;
Xie, Guangzhong ;
Du, Xiaosong ;
Tai, Huiling .
ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (24) :21840-21849
[7]   UV and humidity sensing properties of ZnO nanorods prepared by the arc discharge method [J].
Fang, F. ;
Futter, J. ;
Markwitz, A. ;
Kennedy, J. .
NANOTECHNOLOGY, 2009, 20 (24)
[8]   Fast humidity sensors based on CeO2 nanowires [J].
Fu, X. Q. ;
Wang, C. ;
Yu, H. C. ;
Wang, Y. G. ;
Wang, T. H. .
NANOTECHNOLOGY, 2007, 18 (14)
[9]   A Self-Powered Breath Analyzer Based on PANI/PVDF Piezo-Gas-Sensing Arrays for Potential Diagnostics Application [J].
Fu, Yongming ;
He, Haoxuan ;
Zhao, Tianming ;
Dai, Yitong ;
Han, Wuxiao ;
Ma, Jie ;
Xing, Lili ;
Zhang, Yan ;
Xue, Xinyu .
NANO-MICRO LETTERS, 2018, 10 (04)
[10]   Enhancing the current density of a piezoelectric nanogenerator using a three-dimensional intercalation electrode [J].
Gu, Long ;
Liu, Jinmei ;
Cui, Nuanyang ;
Xu, Qi ;
Du, Tao ;
Zhang, Lu ;
Wang, Zheng ;
Long, Changbai ;
Qin, Yong .
NATURE COMMUNICATIONS, 2020, 11 (01)