Filler-Integrated Composite Polymer Electrolyte for Solid-State Lithium Batteries

被引:349
作者
Liu, Shuailei [1 ,2 ]
Liu, Wenyi [1 ,2 ]
Ba, Deliang [3 ]
Zhao, Yongzhi [1 ,2 ]
Ye, Yihua [1 ,2 ]
Li, Yuanyuan [3 ]
Liu, Jinping [1 ,2 ,4 ,5 ]
机构
[1] Wuhan Univ Technol, Sch Chem Chem Engn & Life Sci, Wuhan 430070, Hubei, Peoples R China
[2] Wuhan Univ Technol, State Key Lab Adv Technol Mat Synth & Proc, Wuhan 430070, Hubei, Peoples R China
[3] Huazhong Univ Sci & Technol, Sch Opt & Elect Informat, Wuhan 430074, Peoples R China
[4] Zhengzhou Univ, State Ctr Int Cooperat Designer Low carbon & Envir, Zhengzhou 450001, Henan, Peoples R China
[5] Zhengzhou Univ, Sch Mat Sci & Engn, Zhengzhou 450001, Henan, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
composite solid electrolytes; electrode-electrolyte interfaces; fillers; filler-polymer interfaces; ionic conductivity; EXCELLENT INTERFACIAL COMPATIBILITY; ELECTROCHEMICAL ENERGY-STORAGE; ION-CONDUCTING MEMBRANE; METAL BATTERIES; HYBRID ELECTROLYTE; GRAPHENE-OXIDE; PERFORMANCE; ENHANCEMENT; STABILITY; NETWORK;
D O I
10.1002/adma.202110423
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Composite polymer electrolytes (CPEs) utilizing fillers as the promoting component bridge the gap between solid polymer electrolytes and inorganic solid electrolytes. The integration of fillers into the polymer matrices is demonstrated as a prevailing strategy to enhance Li-ion transport and assist in constructing Li+-conducting electrode-electrolyte interface layer, which addresses the two key barriers of solid-state lithium batteries (SSLBs): low ionic conductivity of electrolyte and high interfacial impedance. Recent review articles have largely focused on the performance of a broad spectrum of CPEs and the general effects of fillers on SSLBs device. Recognizing this, in this review, after briefly presenting the categories of fillers (traditional and emerged) and the promoted ionic conducting mechanisms in CPEs, the progress in the interfacial structure design principle, with the emphasis on the crucial influence of filler size, concentration, and hybridization strategies on filler-polymer interface that is the most critical to Li-ion transport is assessed. The latest exciting advances on filler-enabled in situ generation of a Li+-conductive layer at the electrode-electrolyte interface to greatly reduce the interfacial impedance are further elaborated. Finally, this review discusses the challenges to be addressed, outlines research directions, and provides a future vision for developing advanced CPEs for high-performing SSLBs.
引用
收藏
页数:23
相关论文
共 133 条
[1]   Polypyrrole/polymer electrolyte composites prepared by in situ electropolymerization of pyrrole as cathode/electrolyte material for facile electron transfer at the solid interface [J].
Amanokura, J ;
Suzuki, Y ;
Imabayashi, S ;
Watanabe, M .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2001, 148 (04) :D43-D48
[2]   Lithium mobility in titanium based Nasicon Li1+xTi2-xAlx(PO4)3 and LiTi2-xZrx(PO4)3 materials followed by NMR and impedance spectroscopy [J].
Arbi, K. ;
Rojo, J. M. ;
Sanz, J. .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2007, 27 (13-15) :4215-4218
[3]   Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction [J].
Bachman, John Christopher ;
Muy, Sokseiha ;
Grimaud, Alexis ;
Chang, Hao-Hsun ;
Pour, Nir ;
Lux, Simon F. ;
Paschos, Odysseas ;
Maglia, Filippo ;
Lupart, Saskia ;
Lamp, Peter ;
Giordano, Livia ;
Shao-Horn, Yang .
CHEMICAL REVIEWS, 2016, 116 (01) :140-162
[4]   A 3D Nanostructured Hydrogel-Framework-Derived High-Performance Composite Polymer Lithium-Ion Electrolyte [J].
Bae, Jiwoong ;
Li, Yutao ;
Zhang, Jun ;
Zhou, Xingyi ;
Zhao, Fei ;
Shi, Ye ;
Goodenough, John B. ;
Yu, Guihua .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (08) :2096-2100
[5]   A hybrid solid electrolyte Li0.33La0.557TiO3/poly(acylonitrile) membrane infiltrated with a succinonitrile-based electrolyte for solid state lithium-ion batteries [J].
Bi, Jiaying ;
Mu, Daobin ;
Wu, Borong ;
Fu, Jiale ;
Yang, Hao ;
Mu, Ge ;
Zhang, Ling ;
Wu, Feng .
JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (02) :706-713
[6]  
Bruce PG, 2012, NAT MATER, V11, P19, DOI [10.1038/NMAT3191, 10.1038/nmat3191]
[7]   Charge transport in graphene oxide [J].
Chang, Dong Wook ;
Baek, Jong-Beom .
NANO TODAY, 2017, 17 :38-53
[8]   In situ construction of Li3N-enriched interface enabling ultra-stable solid-state LiNi0.8Co0.1Mn0.1O2/lithium metal batteries [J].
Chen, Likun ;
Gu, Tian ;
Ma, Jiabin ;
Yang, Ke ;
Shi, Peiran ;
Biao, Jie ;
Mi, Jinshuo ;
Liu, Ming ;
Lv, Wei ;
He, Yan-Bing .
NANO ENERGY, 2022, 100
[9]   Dendrite-free Li metal deposition in all-solid-state lithium sulfur batteries with polymer-in-salt polysiloxane electrolyte [J].
Chen, Long ;
Fan, Li-Zhen .
ENERGY STORAGE MATERIALS, 2018, 15 :37-45
[10]   PEO/garnet composite electrolytes for solid-state lithium batteries: From "ceramic-in-polymer" to "polymer-in-ceramic" [J].
Chen, Long ;
Li, Yutao ;
Li, Shuai-Peng ;
Fan, Li-Zhen ;
Nan, Ce-Wen ;
Goodenough, John B. .
NANO ENERGY, 2018, 46 :176-184