Regulating the Electronic Configuration of Ni Sites by Breaking Symmetry of Ni-Porphyrin to Facilitate CO2 Photocatalytic Reduction

被引:7
作者
Zhong, Yuan-Hui [1 ,2 ]
Wang, Yang [2 ]
Zhao, Sheng-Yi [1 ]
Xie, Ze-Xiang [1 ]
Chung, Lai-Hon [1 ]
Liao, Wei-Ming [1 ]
Yu, Lin [1 ]
Wong, Wai-Yeung [2 ]
He, Jun [1 ,3 ]
机构
[1] Guangdong Univ Technol, Sch Chem Engn & Light Ind, Guangzhou 510006, Guangdong, Peoples R China
[2] Hong Kong Polytech Univ, Inst Smart Energy, Dept Appl Biol & Chem Technol & Res, HungHom,Kowloon, Hong Kong 999077, Peoples R China
[3] Jieyang Ctr, Guangdong Prov Lab Chem & Fine Chem Engn, Jieyang 515200, Peoples R China
基金
中国国家自然科学基金;
关键词
carbon dioxide reduction; electronic configuration regulation; heteroatom substituted porphyrin; photocatalysis; symmetry-breaking; METAL-ORGANIC FRAMEWORKS; COBALT PORPHYRIN; SINGLE ATOMS; EFFICIENT; PHOTOREDUCTION; ENVIRONMENT; CONVERSION; INTERFACE; COMPLEXES; OXIDATION;
D O I
10.1002/adfm.202316199
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Adapting the coordination environment to influence the electronic configuration of active sites represents an efficient approach for improving the photocatalytic performance of the CO2 reduction reaction (CO2RR) but how to execute it precisely remains challenging. Herein, heteroatom-substitution in Ni-porphyrin to break the coordination symmetry of Ni center is proposed to be an effective solution. Based on this, two symmetry-breaking Ni-porphyrins, namely Ni(Cl)ON(3)Por and Ni(Cl)SN(3)Por, are designed and successfully prepared. By theoretical calculation, it is found that symmetry-breaking efficiently regulates the 3d orbital energy levels of Ni center. Furthermore, experimental and theoretical findings jointly revealed that coordination symmetry-breaking of Ni-porphyrins facilitates the generation of highly reactive Ni-I species during the catalytic process, effectively stabilizing and reducing the energy barrier of formation of the key *COOH intermediate. As a result, Ni(Cl)ON(3)Por and Ni(Cl)SN(3)Por gave CO production rates of 24.7 and 38.8 mmol g(-1) h(-1) as well as selectivity toward CO of 94.0% and 96.4%, respectively, outperforming that of symmetric NiN(4)Por (CO production rate of 6.6 mmol g(-1) h(-1) and selectivity of 82.8%). These findings offer microscopic insights into how to modulate the catalytic activity by precisely tuning the coordination environment of active sites and rational design of competent catalyst for CO2RR photocatalysis.
引用
收藏
页数:9
相关论文
共 65 条
  • [1] An L., 2023, ANGEW CHEM-GER EDIT, V62
  • [2] Enhancing photocatalytic hydrogen evolution by intramolecular energy transfer in naphthalimide conjugated porphyrins
    Bodedla, Govardhana Babu
    Li, Lingling
    Che, Yuanyuan
    Jiang, Yijiao
    Huang, Jun
    Zhao, Jianzhang
    Zhu, Xunjin
    [J]. CHEMICAL COMMUNICATIONS, 2018, 54 (82) : 11614 - 11617
  • [3] Highly Efficient and Selective Photocatalytic CO2 Reduction to CO in Water by a Cobalt Porphyrin Molecular Catalyst
    Call, Arnau
    Cibian, Mihaela
    Yamamoto, Keiya
    Nakazono, Takashi
    Yamauchi, Kosei
    Sakai, Ken
    [J]. ACS CATALYSIS, 2019, 9 (06): : 4867 - 4874
  • [4] Nickel polyphthalocyanine with electronic localization at the nickel site for enhanced CO2 reduction reaction
    Chen, Kejun
    Cao, Maoqi
    Ni, Ganghai
    Chen, Shanyong
    Liao, Hanxiao
    Zhu, Li
    Li, Hongmei
    Fu, Junwei
    Hu, Junhua
    Cortes, Emiliano
    Liu, Min
    [J]. APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY, 2022, 306
  • [5] Ligand Engineering in Nickel Phthalocyanine to Boost the Electrocatalytic Reduction of CO2
    Chen, Kejun
    Cao, Maoqi
    Lin, Yiyang
    Fu, Junwei
    Liao, Hanxiao
    Zhou, Yajiao
    Li, Hongmei
    Qiu, Xiaoqing
    Hu, Junhua
    Zheng, Xusheng
    Shakouri, Mohsen
    Xiao, Qunfeng
    Hu, Yongfeng
    Li, Jun
    Liu, Jilei
    Cortes, Emiliano
    Liu, Min
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (10)
  • [6] Fe1N4-O1 site with axial Fe-O coordination for highly selective CO2 reduction over a wide potential range
    Chen, Zhiqiang
    Huang, Aijian
    Yu, Ke
    Cui, Tingting
    Zhuang, Zewen
    Liu, Shoujie
    Li, Jianzhan
    Tu, Renyong
    Sun, Kaian
    Tan, Xin
    Zhang, Jiaqi
    Liu, Di
    Zhang, Yu
    Jiang, Peng
    Pan, Yuan
    Chen, Chen
    Peng, Qing
    Li, Yadong
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2021, 14 (06) : 3430 - 3437
  • [7] A Porphyrinic Zirconium Metal-Organic Framework for Oxygen Reduction Reaction: Tailoring the Spacing between Active-Sites through Chain-Based Inorganic Building Units
    Cichocka, Magdalena Ola
    Liang, Zuozhong
    Feng, Dawei
    Back, Seoin
    Siahrostami, Samira
    Wang, Xia
    Samperisi, Laura
    Sun, Yujia
    Xu, Hongyi
    Hedin, Niklas
    Zheng, Haoquan
    Zou, Xiaodong
    Zhou, Hong-Cai
    Huang, Zhehao
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (36) : 15386 - 15395
  • [8] Re-Investigation of Cobalt Porphyrin for Electrochemical Water Oxidation on FTO Surface: Formation of CoOx as Active Species
    Daniel, Quentin
    Anabre, Ram B.
    Zhang, Biaobiao
    Philippe, Bertrand
    Chen, Hong
    Li, Fusheng
    Fan, Ke
    Ahmadi, Sareh
    Rensmo, Hakan
    Sun, Licheng
    [J]. ACS CATALYSIS, 2017, 7 (02): : 1143 - 1149
  • [9] Operando Spectroscopic Analysis of Axial Oxygen-Coordinated Single-Sn-Atom Sites for Electrochemical CO2 Reduction
    Deng, Yachen
    Zhao, Jian
    Wang, Shifu
    Chen, Ruru
    Ding, Jie
    Tsai, Hsin-Jung
    Zeng, Wen-Jing
    Hung, Sung-Fu
    Xu, Wei
    Wang, Junhu
    Jaouen, Frederic
    Li, Xuning
    Huang, Yanqiang
    Liu, Bin
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2023, 145 (13) : 7242 - 7251
  • [10] Templating Bicarbonate in the Second Coordination Sphere Enhances Electrochemical CO2 Reduction Catalyzed by Iron Porphyrins
    Derrick, Jeffrey S.
    Loipersberger, Matthias
    Nistanaki, Sepand K.
    V. Rothweiler, Aila
    Head-Gordon, Martin
    Nichols, Eva M.
    Chang, Christopher J.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2022, 144 (26) : 11656 - 11663