Surrogate-Assisted Differential Evolution With Adaptive Multisubspace Search for Large-Scale Expensive Optimization

被引:22
作者
Gu, Haoran [1 ,2 ]
Wang, Handing [1 ,2 ]
Jin, Yaochu [3 ,4 ]
机构
[1] Xidian Univ, Sch Artificial Intelligence, Xian 710071, Peoples R China
[2] Xidian Univ, Collaborat Innovat Ctr Quantum Informat Shaanxi Pr, Xian 710071, Peoples R China
[3] Bielefeld Univ, Fac Technol, Nat Inspired Comp & Engn, D-33619 Bielefeld, Germany
[4] Univ Surrey, Dept Comp Sci, Guildford GU2 7XH, England
基金
中国国家自然科学基金;
关键词
Adaptive search switching strategy; large-scale expensive optimization; multisubspace search; radial basis function network (RBFN); surrogate; PARTICLE SWARM OPTIMIZATION; COOPERATIVE COEVOLUTION; ALGORITHM; APPROXIMATION; DESIGN;
D O I
10.1109/TEVC.2022.3226837
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Real-world industrial engineering optimization problems often have a large number of decision variables. Most existing large-scale evolutionary algorithms (EAs) need a large number of function evaluations to achieve high-quality solutions. However, the function evaluations can be computationally intensive for many of these problems, particularly, which makes large-scale expensive optimization challenging. To address this challenge, surrogate-assisted EAs based on the divide-and-conquer strategy have been proposed and shown to be promising. Following this line of research, we propose a surrogate-assisted differential evolution algorithm with adaptive multisubspace search for large-scale expensive optimization to take full advantage of the population and the surrogate mechanism. The proposed algorithm constructs multisubspace based on principal component analysis and random decision variable selection, and searches adaptively in the constructed subspaces with three search strategies. The experimental results on a set of large-scale expensive test problems have demonstrated its superiority over three state-of-the-art algorithms on the optimization problems with up to 1000 decision variables.
引用
收藏
页码:1765 / 1779
页数:15
相关论文
共 50 条
  • [31] Constraint boundary pursuing-based surrogate-assisted differential evolution for expensive optimization problems with mixed constraints
    Yang, Zan
    Qiu, Haobo
    Gao, Liang
    Chen, Liming
    Cai, Xiwen
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2023, 66 (02)
  • [32] Surrogate-Assisted Multipopulation Particle Swarm Optimizer for High-Dimensional Expensive Optimization
    Liu, Yuanchao
    Liu, Jianchang
    Jin, Yaochu
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2022, 52 (07): : 4671 - 4684
  • [33] An efficient surrogate-assisted hybrid optimization algorithm for expensive optimization problems
    Pan, Jeng-Shyang
    Liu, Nengxian
    Chu, Shu-Chuan
    Lai, Taotao
    INFORMATION SCIENCES, 2021, 561 : 304 - 325
  • [34] A review of surrogate-assisted evolutionary algorithms for expensive optimization problems
    He, Chunlin
    Zhang, Yong
    Gong, Dunwei
    Ji, Xinfang
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 217
  • [35] A surrogate-assisted differential evolution for high-dimensional expensive constrained optimization problems with mixed-integer variables
    Liu, Yuanhao
    Yang, Zan
    Jiang, Chen
    Xu, Danyang
    Qiu, Haobo
    Gao, Liang
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 272
  • [36] Committee-Based Active Learning for Surrogate-Assisted Particle Swarm Optimization of Expensive Problems
    Wang, Handing
    Jin, Yaochu
    Doherty, John
    IEEE TRANSACTIONS ON CYBERNETICS, 2017, 47 (09) : 2664 - 2677
  • [37] Surrogate-Assisted Differential Evolution with multiple sampling mechanisms for high-dimensional expensive problems
    Yu, Laiqi
    Meng, Zhenyu
    INFORMATION SCIENCES, 2025, 687
  • [38] Surrogate-assisted evolutionary optimization of expensive many-objective irregular problems
    Liu, Qiqi
    Jin, Yaochu
    Heiderich, Martin
    Rodemann, Tobias
    KNOWLEDGE-BASED SYSTEMS, 2022, 240
  • [39] Decision space partition based surrogate-assisted evolutionary algorithm for expensive optimization
    Liu, Yuanchao
    Liu, Jianchang
    Tan, Shubin
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 214
  • [40] A surrogate-assisted evolution strategy for constrained multi-objective optimization
    Datta, Rituparna
    Regis, Rommel G.
    EXPERT SYSTEMS WITH APPLICATIONS, 2016, 57 : 270 - 284