DCANet: deep context attention network for automatic polyp segmentation

被引:6
作者
Muhammad, Zaka-Ud-Din [1 ,2 ]
Huang, Zhangjin [1 ,2 ,3 ]
Gu, Naijie [1 ,2 ]
Muhammad, Usman [4 ]
机构
[1] Univ Sci & Technol China, Sch Comp Sci & Technol, Hefei 230027, Peoples R China
[2] Anhui Prov Key Lab Software Comp & Commun, Hefei 230027, Peoples R China
[3] USTC, Deqing Alpha Innovat Inst, Huzhou 313299, Peoples R China
[4] Univ Sci & Technol China, Dept Automat, Hefei 230027, Peoples R China
基金
中国国家自然科学基金;
关键词
Deep learning; Medical image segmentation; Polyp segmentation; Colorectal cancer; Multi-attention; UNET PLUS PLUS; VALIDATION;
D O I
10.1007/s00371-022-02677-x
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Automatic and accurate polyp segmentation is significant for diagnosis and treatment of colorectal cancer. This is a challenging task due to the polyp's shape and size diversity. Recently, various deep convolutional neural networks have been developed for polyp segmentation. However, most state-of-the-art methods have suffered from a poor performance in the segmentation of smaller, flat, or noisy polyp objects. In the paper, we propose a novel Deep Context Attention Network (DCANet) for accurate polyp segmentation based on an encoder-decoder framework. ResNet34 is adopted as the encoder, and five functional modules are introduced to improve the performance. Specifically, the improved local context attention module (LCAM) and global context module (GCM) are exploited to efficiently extract the local multi-scale and global multi-receptive-field context information, respectively. Then, an enhanced feature fusion module (FFM) is devised to effectively select and aggregate context features through spatial-channel attention. Finally, equipped with elaborately designed multi-attention modules (MAM), new decoder and supervision blocks are developed to accurately predict polyp regions via powerful channel-spatial-channel attention. Extensive experiments are conducted on the Kvasir-SEG and EndoScene benchmark datasets. The results demonstrate that the proposed network achieves superior performance compared to other state-of-the-art models. The source code will be available at https://github.com/ZAKAUDD/DCANet.
引用
收藏
页码:5513 / 5525
页数:13
相关论文
共 72 条
[1]   Deep transfer learning-based automated detection of COVID-19 from lung CT scan slices [J].
Ahuja, Sakshi ;
Panigrahi, Bijaya Ketan ;
Dey, Nilanjan ;
Rajinikanth, Venkatesan ;
Gandhi, Tapan Kumar .
APPLIED INTELLIGENCE, 2021, 51 (01) :571-585
[2]  
Akbari M, 2018, IEEE ENG MED BIO, P69, DOI 10.1109/EMBC.2018.8512197
[3]  
Angelica B., 2021, Colorectal cancer: symptoms, treatment, risk factors and more
[4]   Global patterns and trends in colorectal cancer incidence and mortality [J].
Arnold, Melina ;
Sierra, Monica S. ;
Laversanne, Mathieu ;
Soerjomataram, Isabelle ;
Jemal, Ahmedin ;
Bray, Freddie .
GUT, 2017, 66 (04) :683-691
[5]   An automatic framework for endoscopic image restoration and enhancement [J].
Asif, Muhammad ;
Chen, Lei ;
Song, Hong ;
Yang, Jian ;
Frangi, Alejandro F. .
APPLIED INTELLIGENCE, 2021, 51 (04) :1959-1971
[6]   SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation [J].
Badrinarayanan, Vijay ;
Kendall, Alex ;
Cipolla, Roberto .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (12) :2481-2495
[7]   Towards automatic polyp detection with a polyp appearance model [J].
Bernal, J. ;
Sanchez, J. ;
Vilarino, F. .
PATTERN RECOGNITION, 2012, 45 (09) :3166-3182
[8]   Comparative Validation of Polyp Detection Methods in Video Colonoscopy: Results From the MICCAI 2015 Endoscopic Vision Challenge [J].
Bernal, Jorge ;
Tajkbaksh, Nima ;
Sanchez, Francisco Javier ;
Matuszewski, Bogdan J. ;
Chen, Hao ;
Yu, Lequan ;
Angermann, Quentin ;
Romain, Olivier ;
Rustad, Bjorn ;
Balasingham, Ilangko ;
Pogorelov, Konstantin ;
Choi, Sungbin ;
Debard, Quentin ;
Maier-Hein, Lena ;
Speidel, Stefanie ;
Stoyanov, Danail ;
Brandao, Patrick ;
Cordova, Henry ;
Sanchez-Montes, Cristina ;
Gurudu, Suryakanth R. ;
Fernandez-Esparrach, Gloria ;
Dray, Xavier ;
Liang, Jianming ;
Histace, Aymeric .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2017, 36 (06) :1231-1249
[9]   WM-DOVA maps for accurate polyp highlighting in colonoscopy: Validation vs. saliency maps from physicians [J].
Bernal, Jorge ;
Javier Sanchez, F. ;
Fernandez-Esparrach, Gloria ;
Gil, Debora ;
Rodriguez, Cristina ;
Vilarino, Fernando .
COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2015, 43 :99-111
[10]   Fully Convolutional Neural Networks for Polyp Segmentation in Colonoscopy [J].
Brandao, Patrick ;
Mazomenos, Evangelos ;
Ciuti, Gastone ;
Calio, Renato ;
Bianchi, Federico ;
Menciassi, Arianna ;
Dario, Paolo ;
Koulaouzidis, Anastasios ;
Arezzo, Alberto ;
Stoyanov, Danail .
MEDICAL IMAGING 2017: COMPUTER-AIDED DIAGNOSIS, 2017, 10134