Machine learning for weed-plant discrimination in agriculture 5.0: An in-depth review

被引:28
作者
Juwono, Filbert H. [1 ]
Wong, W. K. [2 ]
Verma, Seema [3 ]
Shekhawat, Neha [3 ]
Lease, Basil Andy [2 ]
Apriono, Catur [4 ]
机构
[1] Xian Jiaotong Liverpool Univ, Dept Elect & Elect Engn, Suzhou 215123, Peoples R China
[2] Curtin Univ Malaysia, Dept Elect & Comp Engn, Miri 98009, Malaysia
[3] Banasthali Vidyapith, Sch Phys Sci, Radha Kishnpura 304022, Rajasthan, India
[4] Univ Indonesia, Dept Elect Engn, Depok 16424, Indonesia
来源
ARTIFICIAL INTELLIGENCE IN AGRICULTURE | 2023年 / 10卷
关键词
Agriculture; 5.0; Machine learning; Unmanned aerial vehicle; Weed-plant discrimination; COMPUTER-VISION; NEURAL-NETWORKS; CLASSIFICATION; CROPS; IDENTIFICATION; TEXTURE; SEGMENTATION; FEATURES; SYSTEM; IMAGES;
D O I
10.1016/j.aiia.2023.09.002
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
Agriculture 5.0 is an emerging concept where sensors, big data, Internet-of-Things (IoT), robots, and Artificial Intelligence (AI) are used for agricultural purposes. Different from Agriculture 4.0, robots and AI become the focus of the implementation in Agriculture 5.0. One of the applications of Agriculture 5.0 is weed management where robots are used to discriminate weeds from the crops or plants so that proper action can be performed to remove the weeds. This paper discusses an in-depth review of Machine Learning (ML) techniques used for discriminating weeds from crops or plants. We specifically present a detailed explanation of five steps required in using ML algorithms to distinguish between weeds and plants.(c) 2023 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:13 / 25
页数:13
相关论文
共 96 条
[51]   Site-specific weed management-constraints and opportunities for the weed research community: Insights from a workshop [J].
Lati, Ran Nisim ;
Rasmussen, Jesper ;
Andujar, Dionisio ;
Dorado, Jose ;
Berge, Therese W. ;
Wellhausen, Christina ;
Pflanz, Michael ;
Nordmeyer, Henning ;
Schirrmann, Michael ;
Eizenberg, Hanan ;
Neve, Paul ;
Jorgensen, Rasmus Nyholm ;
Christensen, Svend .
WEED RESEARCH, 2021, 61 (03) :147-153
[52]  
Lease B.A., 2020, SN Comput. Sci., V1, P1
[53]   Extended local binary patterns for face recognition [J].
Liu, Li ;
Fieguth, Paul ;
Zhao, Guoying ;
Pietikainen, Matti ;
Hu, Dewen .
INFORMATION SCIENCES, 2016, 358 :56-72
[54]   Weed detection for site-specific weed management: mapping and real-time approaches [J].
Lopez-Granados, F. .
WEED RESEARCH, 2011, 51 (01) :1-11
[55]  
LR V.N., 2021, P INT C SYST EN ENV
[56]   Comparing the Performance of Multispectral and Hyperspectral Images for Estimating Vegetation Properties [J].
Lu, Bing ;
He, Yuhong ;
Dao, Phuong D. .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2019, 12 (06) :1784-1797
[57]   Large-Scale Transportation Network Congestion Evolution Prediction Using Deep Learning Theory [J].
Ma, Xiaolei ;
Yu, Haiyang ;
Wang, Yunpeng ;
Wang, Yinhai .
PLOS ONE, 2015, 10 (03)
[58]  
Maenpaa T, 2005, HDB PATTERN RECOGNIT, P197, DOI DOI 10.1142/9789812775320_0011
[59]   Hyperspectral imaging in different light conditions [J].
Manea, D. ;
Calin, M. A. .
IMAGING SCIENCE JOURNAL, 2015, 63 (04) :214-219
[60]   Mixtures of Lightweight Deep Convolutional Neural Networks: Applied to Agricultural Robotics [J].
McCool, Chris ;
Perez, Tristan ;
Upcroft, Ben .
IEEE ROBOTICS AND AUTOMATION LETTERS, 2017, 2 (03) :1344-1351