Artificial intelligence in psychiatry research, diagnosis, and therapy

被引:58
作者
Sun, Jie [1 ,2 ]
Dong, Qun-Xi [3 ]
Wang, San-Wang [2 ,4 ]
Zheng, Yong-Bo [2 ,5 ,6 ]
Liu, Xiao-Xing [2 ]
Lu, Tang-Sheng [7 ,8 ]
Yuan, Kai [2 ]
Shi, Jie [7 ,8 ]
Hu, Bin [3 ]
Lu, Lin [2 ,5 ,6 ,9 ]
Han, Ying [7 ,8 ]
机构
[1] Peking Univ Third Hosp, Pain Med Ctr, Beijing 100191, Peoples R China
[2] Peking Univ, Peking Univ Sixth Hosp, Inst Mental Hlth, NHC Key Lab Mental Hlth,Natl Clin Res Ctr Mental D, Beijing 100191, Peoples R China
[3] Beijing Inst Technol, Sch Med Technol, 5 Zhongguancun South, Beijing 100081, Peoples R China
[4] Wuhan Univ, Renmin Hosp, Dept Psychiat, Wuhan 430060, Peoples R China
[5] Peking Univ, Peking Tsinghua Ctr Life Sci, Beijing 100871, Peoples R China
[6] Peking Univ, PKU IDG McGovern Inst Brain Res, Beijing 100871, Peoples R China
[7] Peking Univ, Natl Inst Drug Dependence, Beijing 100191, Peoples R China
[8] Peking Univ, Beijing Key Lab Drug Dependence Res, Beijing 100191, Peoples R China
[9] Peking Univ Sixth Hosp, Inst Mental Hlth, 51 Huayuanbei Rd, Beijing 100191, Peoples R China
关键词
Psychiatric disorders; Artificial intelligence; Diagnosis; Prognosis; Treatment; MENTAL-HEALTH; ALZHEIMERS-DISEASE; NEURAL-NETWORKS; SLEEP-APNEA; SCHIZOPHRENIA; PREDICTION; CLASSIFICATION; PSYCHOLOGY; FRAMEWORK; CHATBOTS;
D O I
10.1016/j.ajp.2023.103705
中图分类号
R749 [精神病学];
学科分类号
100205 ;
摘要
Psychiatric disorders are now responsible for the largest proportion of the global burden of disease, and even more challenges have been seen during the COVID-19 pandemic. Artificial intelligence (AI) is commonly used to facilitate the early detection of disease, understand disease progression, and discover new treatments in the fields of both physical and mental health. The present review provides a broad overview of AI methodology and its applications in data acquisition and processing, feature extraction and characterization, psychiatric disorder classification, potential biomarker detection, real-time monitoring, and interventions in psychiatric disorders. We also comprehensively summarize AI applications with regard to the early warning, diagnosis, prognosis, and treatment of specific psychiatric disorders, including depression, schizophrenia, autism spectrum disorder, attention-deficit/hyperactivity disorder, addiction, sleep disorders, and Alzheimer's disease. The advantages and disadvantages of AI in psychiatry are clarified. We foresee a new wave of research opportunities to facilitate and improve AI technology and its long-term implications in psychiatry during and after the COVID-19 era.
引用
收藏
页数:12
相关论文
共 134 条
[61]   Predicting Splicing from Primary Sequence with Deep Learning [J].
Jaganathan, Kishore ;
Panagiotopoulou, Sofia Kyriazopoulou ;
McRae, Jeremy F. ;
Darbandi, Siavash Fazel ;
Knowles, David ;
Li, Yang I. ;
Kosmicki, Jack A. ;
Arbelaez, Juan ;
Cui, Wenwu ;
Schwartz, Grace B. ;
Chow, Eric D. ;
Kanterakis, Efstathios ;
Gao, Hong ;
Kia, Amirali ;
Batzoglou, Serafim ;
Sanders, Stephan J. ;
Farh, Kyle Kai-How .
CELL, 2019, 176 (03) :535-+
[62]   Performance of Machine Learning Algorithms for Predicting Progression to Dementia in Memory Clinic Patients [J].
James, Charlotte ;
Ranson, Janice M. ;
Everson, Richard ;
Llewellyn, David J. .
JAMA NETWORK OPEN, 2021, 4 (12)
[63]  
James SL, 2018, LANCET, V392, P1789, DOI [10.1016/s0140-6736(18)32335-3, 10.1016/S0140-6736(18)32335-3]
[64]   Multi-omics driven predictions of response to acute phase combination antidepressant therapy: a machine learning approach with cross-trial replication [J].
Joyce, Jeremiah B. ;
Grant, Caroline W. ;
Liu, Duan ;
MahmoudianDehkordi, Siamak ;
Kaddurah-Daouk, Rima ;
Skime, Michelle ;
Biernacka, Joanna ;
Frye, Mark A. ;
Mayes, Taryn ;
Carmody, Thomas ;
Croarkin, Paul E. ;
Wang, Liewei ;
Weinshilboum, Richard ;
Bobo, William, V ;
Trivedi, Madhukar H. ;
Athreya, Arjun P. .
TRANSLATIONAL PSYCHIATRY, 2021, 11 (01)
[65]   Key challenges for delivering clinical impact with artificial intelligence [J].
Kelly, Christopher J. ;
Karthikesalingam, Alan ;
Suleyman, Mustafa ;
Corrado, Greg ;
King, Dominic .
BMC MEDICINE, 2019, 17 (01)
[66]   Social Robots as Embedded Reinforcers of Social Behavior in Children with Autism [J].
Kim, Elizabeth S. ;
Berkovits, Lauren D. ;
Bernier, Emily P. ;
Leyzberg, Dan ;
Shic, Frederick ;
Paul, Rhea ;
Scassellati, Brian .
JOURNAL OF AUTISM AND DEVELOPMENTAL DISORDERS, 2013, 43 (05) :1038-1049
[67]   Multimodal machine learning in precision health: A scoping review [J].
Kline, Adrienne ;
Wang, Hanyin ;
Li, Yikuan ;
Dennis, Saya ;
Hutch, Meghan ;
Xu, Zhenxing ;
Wang, Fei ;
Cheng, Feixiong ;
Luo, Yuan .
NPJ DIGITAL MEDICINE, 2022, 5 (01)
[68]   From promise to practice: towards the realisation of AI-informed mental health care [J].
Koutsouleris, Nikolaos ;
Hauser, Tobias U. ;
Skvortsova, Vasilisa ;
De Choudhury, Munmun .
LANCET DIGITAL HEALTH, 2022, 4 (11) :e829-e840
[69]   The sleep-deprived human brain [J].
Krause, Adam J. ;
Ben Simon, Eti ;
Mander, Bryce A. ;
Greer, Stephanie M. ;
Saletin, Jared M. ;
Goldstein-Piekarski, Andrea N. ;
Walker, Matthew P. .
NATURE REVIEWS NEUROSCIENCE, 2017, 18 (07) :404-418
[70]   Mobile Apps for Mental Health Issues: Meta-Review of Meta-Analyses [J].
Lecomte, Tania ;
Potvin, Stephane ;
Corbiere, Marc ;
Guay, Stephane ;
Samson, Crystal ;
Cloutier, Briana ;
Francoeur, Audrey ;
Pennou, Antoine ;
Khazaal, Yasser .
JMIR MHEALTH AND UHEALTH, 2020, 8 (05)