Insensitive: Simulation of the NMR Experiment for Didactic Purposes

被引:3
作者
Boldt, Klaus [1 ]
机构
[1] Univ Rostock, Inst Chem, Albert Einstein Str 27, D-18059 Rostock, Germany
关键词
PRODUCT OPERATOR-FORMALISM; COMPUTER-PROGRAM; SPIN DYNAMICS; STATE;
D O I
10.1007/s00723-023-01552-9
中图分类号
O64 [物理化学(理论化学)、化学物理学]; O56 [分子物理学、原子物理学];
学科分类号
070203 ; 070304 ; 081704 ; 1406 ;
摘要
Since its first publication in 2011, the program "Insensitive" has progressed to be one of the most feature-rich, educational simulation tools for the nuclear magnetic resonance experiment in homogeneous solution. It can be used without prior knowledge of a programming language or complex spectrometer software. In four steps it follows the spin physics behind NMR, from the creation of a spin system to the acquisition and processing of a one or two-dimensional spectrum. At its core, it visualises common models of the spin state, both graphic and numerical, and allows to manipulate each interaction at various levels of sophistication. Thus, it provides graphical aides and can be used as a tool for teaching and self-teaching a highly abstract and demanding topic.
引用
收藏
页码:761 / 777
页数:17
相关论文
共 23 条
[1]  
Anderson E., 1999, LAPACK USERS GUIDE
[2]  
Bain AD, 1998, CONCEPT MAGNETIC RES, V10, P85, DOI 10.1002/(SICI)1099-0534(1998)10:2<85::AID-CMR2>3.3.CO
[3]  
2-M
[4]   An updated set of Basic Linear Algebra Subprograms (BLAS) [J].
Blackford, LS ;
Demmel, J ;
Dongarra, J ;
Duff, I ;
Hammarling, S ;
Henry, G ;
Heroux, M ;
Kaufman, L ;
Lumsdaine, A ;
Petitet, A ;
Pozo, R ;
Remington, K ;
Whaley, RC .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2002, 28 (02) :135-151
[5]   Simulating Spin Dynamics in NMR with a New Computer Program Intended for Education: Insensitive [J].
Boldt, Klaus .
CONCEPTS IN MAGNETIC RESONANCE PART A, 2011, 38A (02) :17-24
[6]  
Ernst R.R., 1990, Principles of Nuclear Magnetic Resonance in One and Two Dimensions
[7]  
International Series, P640
[8]   The design and implementation of FFTW3 [J].
Frigo, M ;
Johnson, SG .
PROCEEDINGS OF THE IEEE, 2005, 93 (02) :216-231
[9]   Visualizing operators of coupled spin systems [J].
Garon, Ariane ;
Zeier, Robert ;
Glaser, Steffen J. .
PHYSICAL REVIEW A, 2015, 91 (04)
[10]   The Product Operator Formalism: A Physical and Graphical Interpretation [J].
Goldenberg, David P. .
CONCEPTS IN MAGNETIC RESONANCE PART A, 2010, 36A (02) :49-83