Improved lithospheric seismic velocity and density model of the Korean Peninsula from ambient seismic noise data using machine learning

被引:3
|
作者
Song, Youngseok [1 ]
Lee, Jaewook [2 ]
Yeeh, Zeu [1 ]
Kim, Minki [3 ]
Byun, Joongmoo [1 ]
机构
[1] Hanyang Univ, Reservoir Imaging Seism & EM Technol Lab, Seoul, South Korea
[2] Univ Texas Austin, Bur Econ Geol, Austin, TX 78712 USA
[3] Schlumberger Integrated Solut, Digital & Integrat Div, Seoul, South Korea
基金
新加坡国家研究基金会;
关键词
Seismic interferometry; Spectral enhancement; Seismic interpretation; Lithosphere; Machine learning; Seismic noise; WAVE PROPAGATION; DECONVOLUTION; SIMULATIONS; TOMOGRAPHY; BENEATH;
D O I
10.1016/j.jseaes.2023.105728
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
To accurately estimate physical properties and tectonic behavior in the near-surface, a reliable seismic property model is needed for realistic seismic modeling and earthquake location estimation. Recording ambient seismic noise (ASN) data and producing interferometric reflection images traditionally provides subsurface structure observation without an active source. However, due to low signal-to-noise ratio (SNR) and vertical resolution, interpreting upper mantle structures and inverting seismic models from noise data is difficult. To address this, machine learning (ML) techniques are applied to enhance vertical resolution and interpret geologically mean-ingful boundaries. Spectral enhancement with convolutional U-net generates higher resolution data by preser-ving temporal continuity. Unsupervised ML interprets lithospheric boundaries more robustly and objectively than manual horizon picking, and model-based seismic inversion integrates improved seismic data with prior full-waveform inversion (FWI) models. ML-based results improve inverted models, displaying more detailed geological structures and seismic property changes, surpassing seismic data limitations.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Resolution enhancement for a seismic velocity model using machine learning
    Kim, Sujeong
    Cho, Yongchae
    Jun, Hyunggu
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2024, 238 (02) : 681 - 699
  • [2] S-wave velocity model for several regions of the Kamchatka Peninsula from the cross correlations of ambient seismic noise
    Droznina, S. Ya.
    Shapiro, N. M.
    Droznin, D. V.
    Senyukov, S. L.
    Chebrov, V. N.
    Gordeev, E. I.
    IZVESTIYA-PHYSICS OF THE SOLID EARTH, 2017, 53 (03) : 341 - 352
  • [3] S-wave velocity model for several regions of the Kamchatka Peninsula from the cross correlations of ambient seismic noise
    S. Ya. Droznina
    N. M. Shapiro
    D. V. Droznin
    S. L. Senyukov
    V. N. Chebrov
    E. I. Gordeev
    Izvestiya, Physics of the Solid Earth, 2017, 53 : 341 - 352
  • [4] Msnoise, a python package for monitoring seismic velocity changes using ambient seismic noise
    1600, Seismological Society of America, 201 Plaza Professional Building, El Cerrito, CA 94530, United States (85):
  • [5] MSNoise, a Python']Python Package for Monitoring Seismic Velocity Changes Using Ambient Seismic Noise
    Lecocq, Thomas
    Caudroni, Corentin
    Brenguier, Florent
    SEISMOLOGICAL RESEARCH LETTERS, 2014, 85 (03) : 715 - 726
  • [6] Robust seismic velocity change estimation using ambient noise recordings
    Daskalakis, E.
    Evangelidis, C. P.
    Garnier, J.
    Melis, N. S.
    Papanicolaou, G.
    Tsogka, C.
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2016, 205 (03) : 1926 - 1936
  • [7] Seismic Data Classification using Machine Learning
    Li, Wenrui
    Nakshatra
    Narvekar, Nishita
    Raut, Nitisha
    Sirkeci, Birsen
    Gao, Jerry
    2018 IEEE FOURTH INTERNATIONAL CONFERENCE ON BIG DATA COMPUTING SERVICE AND APPLICATIONS (IEEE BIGDATASERVICE 2018), 2018, : 56 - 63
  • [8] Seismic velocity changes in the epicentral region of the 2013 Lushan earthquake measured from ambient seismic noise
    Wang Jun
    Zheng DingChang
    Zhang JinChuan
    Zhan XiaoYan
    Qian Ting
    CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2020, 63 (02): : 517 - 531
  • [9] Shear Velocity Inversion Using Multimodal Dispersion Curves From Ambient Seismic Noise Data of USArray Transportable Array
    Wu, Gao-xiong
    Pan, Lei
    Wang, Jian-nan
    Chen, Xiaofei
    JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2020, 125 (01)
  • [10] Crustal velocity structure across the southern Korean Peninsula from seismic refraction survey
    Cho, HM
    Baag, CE
    Lee, JM
    Moon, WM
    Jung, H
    Kim, KY
    Asudeh, I
    GEOPHYSICAL RESEARCH LETTERS, 2006, 33 (06)