Enhancing the performance and stability of solid oxide fuel cells by adopting samarium-doped ceria buffer layer

被引:9
作者
Wu, Yang [1 ,2 ]
Sang, Junkang [2 ]
Liu, Zhijun [2 ]
Fan, Hongpeng [1 ,2 ]
Cao, Baohua [2 ]
Wang, Qin [3 ]
Yang, Jun [2 ]
Guan, Wanbing [2 ]
Liu, Xinghai [1 ]
Wang, Jianxin [2 ]
机构
[1] Zhejiang Univ Technol, Coll Chem Engn, Hangzhou, Peoples R China
[2] Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Key Lab Adv Fuel Cells & Electrolytes Technol Zhej, Ningbo 315201, Zhejiang, Peoples R China
[3] Ningbo Univ, Sch Phys Sci & Technol, Dept Microelect Sci & Engn, Ningbo, Peoples R China
基金
中国国家自然科学基金;
关键词
Sm0; 2Ce0; 9; Buffer layer; Acetic acid method; Intermediate temperature; Solid oxide fuel cells; Stability; COMPOSITE CATHODES; OXYGEN; SURFACTANT; COATINGS;
D O I
10.1016/j.ceramint.2023.03.152
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this work, the Sm0.2Ce0.8O1.9 (SDC) buffer layer was used to replace the Gd0.1Ce0.9O1.95 (GDC) buffer layer to improve the long-term stability and performance of the solid oxide fuel cells (SOFCs) in the intermediate tem-perature (550-750 degrees C). The buffer layer was prepared by screen printing method. The micromorphology of the SDC buffer layer and the cell structures was observed by scanning electron microscopy (SEM). The electro-chemical impedance spectroscopy (EIS) results showed that the polarization resistance (RP) of the cell with SDC buffer layer was smaller than that of the cell with GDC buffer layer, reducing the RP values by 43.52% and 43.33%, respectively (SDC-cell: 0.12 omega cm2 at 650 degrees C and 0.27 omega cm2 at 600 degrees C). The maximum power density of the cell with SDC buffer layer is 560 mW cm-2 at 650 degrees C, which was 25% higher than that with GDC buffer layer. The long-term durability of the cell with SDC buffer layer was better than that of the cell with GDC buffer layer. These provide an excellent prospect for utilizing SDC buffer layer.
引用
收藏
页码:20290 / 20297
页数:8
相关论文
共 39 条
[1]   Progress in solid oxide fuel cell-gas turbine hybrid power systems: System design and analysis, transient operation, controls and optimization [J].
Azizi, Mohammad Ali ;
Brouwer, Jacob .
APPLIED ENERGY, 2018, 215 :237-289
[2]   Enhancing oxygen reduction reaction of YSZ/La2NiO4+δ using an ultrathin La2NiO4+δ interfacial layer [J].
Benamira, M. ;
Ringuede, A. ;
Cassir, M. ;
Horwat, D. ;
Lenormand, P. ;
Ansart, F. ;
Bassat, J. M. ;
Viricelle, J. P. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2018, 746 :413-420
[3]   Coating internal surface of porous electrode for decreasing the ohmic resistance and shifting oxygen reduction reaction pathways in solid oxide fuel cells [J].
Chen, Yun ;
Paredes-Navia, Sergio A. ;
Romo-De-La-Cruz, Cesar-Octavio ;
Liang, Liang ;
Fernandes, Andre ;
Hinerman, Alec ;
Prucz, Jacky ;
Williams, Mark ;
Song, Xueyan .
JOURNAL OF POWER SOURCES, 2021, 499
[4]   Electrocatalytic activity of perovskite-based cathodes for solid oxide fuel cells [J].
Clematis, D. ;
Barbucci, A. ;
Presto, S. ;
Viviani, M. ;
Carpanese, Mp .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (12) :6212-6222
[5]   Evolution of cathode-interlayer interfaces and its effect on long-term degradation [J].
Develos-Bagarinao, Katherine ;
Budiman, Riyan A. ;
Liu, Shu-Sheng ;
Ishiyama, Tomohiro ;
Kishimoto, Haruo ;
Yamaji, Katsuhiko .
JOURNAL OF POWER SOURCES, 2020, 453 (453)
[6]   Electrochemical characterization of La2NiO4-infiltrated La0.6Sr0.4Co0.2Fe0.8O3-δ by analysis of distribution of relaxation times [J].
Ghamarinia, Mitra ;
Babaei, Alireza ;
Zamani, Cyrus .
ELECTROCHIMICA ACTA, 2020, 353
[7]   Review on fabrication techniques for porous electrodes of solid oxide fuel cells by sacrificial template methods [J].
Hedayat, Nader ;
Du, Yanhai ;
Ilkhani, Hoda .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2017, 77 :1221-1239
[8]   Evaluation of La0.6Sr0.4CoO3-δ-Ce0.85Sm0.075Nd0.075O2-δ composite cathodes for intermediate temperature solid oxide fuel cells [J].
Huang, Zhangfa ;
Liu, Zhijun ;
Hu, Hua ;
Wang, Jianxin ;
Chen, Ming ;
Cao, Baohua ;
Wang, Qin ;
Yang, Jun ;
Guan, Wanbing ;
Liang, Tongxiang .
CERAMICS INTERNATIONAL, 2022, 48 (11) :16319-16325
[9]   Challenges in developing direct carbon fuel cells [J].
Jiang, Cairong ;
Ma, Jianjun ;
Corre, Gael ;
Jain, Sneh L. ;
Irvine, John T. S. .
CHEMICAL SOCIETY REVIEWS, 2017, 46 (10) :2889-2912
[10]   Controlling cation migration and inter-diffusion across cathode/interlayer/ electrolyte interfaces of solid oxide fuel cells: A review [J].
Khan, Muhammad Zubair ;
Song, Rak-Hyun ;
Mehran, Muhammad Taqi ;
Lee, Seung-Bok ;
Lim, Tak-Hyoung .
CERAMICS INTERNATIONAL, 2021, 47 (05) :5839-5869