HTSE: hierarchical time-surface model for temporal knowledge graph embedding

被引:2
|
作者
Jin, Langjunqing [1 ]
Zhao, Feng [1 ]
Jin, Hai [1 ]
机构
[1] Huazhong Univ Sci & Technol, Natl Engn Res Ctr Big Data Technol & Syst, Sch Comp Sci & Technol, Serv Comp Technol,Cluster & Grid Comp Lab, Wuhan 430074, Hubei, Peoples R China
来源
WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS | 2023年 / 26卷 / 05期
基金
中国国家自然科学基金;
关键词
Knowledge graph embedding; Semantic hierarchy; Time surface; Temporal prediction;
D O I
10.1007/s11280-023-01170-2
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Representation learning based on temporal knowledge graphs (TKGs) has attracted widespread interest, and temporal knowledge graph embedding (TKGE) expresses time entity and relation tokens and exhibit strong dynamics. Despite the significance of the dynamics and the persistent updates in TKGs, most studies have been devoted to static knowledge graphs. Moreover, previous temporal works ignored the semantic hierarchies observed in knowledge modelling cases, which are common in real-world applications. Inaccurate semantic expressions caused by incomplete projections might not capture complex topological structures very well. To solve this problem, a novel hierarchicaltime-surfaceembedding (HTSE) model is proposed for the representation learning of entities, relations and time. Specifically, a unified relation-oriented hierarchical space aims to distinguish relations at different semantic levels of a hierarchy, and entities can naturally reflect the corresponding hierarchy. Then, a time surface aims to enhance the temporal characteristics, and quadruples are learned through exponential mapping and tangent planes in the time surface. According to extensive experiments, HTSE can achieve remarkable performance on five benchmark datasets, outperforming baseline models for time scope prediction, temporal link prediction and hierarchical relation embedding tasks.Furthermore, the qualitative analysis is used to demonstrate the explainable strategy for hierarchical embeddings and their significance in TKGs.
引用
收藏
页码:2947 / 2967
页数:21
相关论文
共 50 条
  • [1] HTSE: hierarchical time-surface model for temporal knowledge graph embedding
    Langjunqing Jin
    Feng Zhao
    Hai Jin
    World Wide Web, 2023, 26 : 2947 - 2967
  • [2] Hyperplane-based time-aware knowledge graph embedding for temporal knowledge graph completion
    He, Peng
    Zhou, Gang
    Liu, Hongbo
    Xia, Yi
    Wang, Ling
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2022, 42 (06) : 5457 - 5469
  • [3] Embedding Hierarchical Tree Structure of Concepts in Knowledge Graph Embedding
    Yu, Jibin
    Zhang, Chunhong
    Hu, Zheng
    Ji, Yang
    ELECTRONICS, 2024, 13 (22)
  • [4] A Hierarchical Knowledge Graph Embedding Framework for Link Prediction
    Liu, Shuang
    Hou, Chengwang
    Meng, Jiana
    Chen, Peng
    Kolmanic, Simon
    IEEE ACCESS, 2024, 12 : 173338 - 173350
  • [5] Knowledge Graph Embedding Combining with Hierarchical Type Information
    Zhang J.-D.
    Li J.
    Ruan Jian Xue Bao/Journal of Software, 2022, 33 (09):
  • [6] Multisource hierarchical neural network for knowledge graph embedding
    Jiang, Dan
    Wang, Ronggui
    Xue, Lixia
    Yang, Juan
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 237
  • [7] Context-Aware Temporal Knowledge Graph Embedding
    Liu, Yu
    Hua, Wen
    Xin, Kexuan
    Zhou, Xiaofang
    WEB INFORMATION SYSTEMS ENGINEERING - WISE 2019, 2019, 11881 : 583 - 598
  • [8] Hierarchy-Aware Temporal Knowledge Graph Embedding
    Zhang, Jiaming
    Yu, Hong
    2022 IEEE INTERNATIONAL CONFERENCE ON KNOWLEDGE GRAPH (ICKG), 2022, : 373 - 380
  • [9] Knowledge Graph Embedding Based on Semantic Hierarchical Spatial Rotation
    Yin, Liangcheng
    Zhu, Jie
    Hou, Enshuai
    Ni, Ma
    2021 INTERNATIONAL CONFERENCE ON ASIAN LANGUAGE PROCESSING (IALP), 2021, : 19 - 24
  • [10] Improving temporal knowledge graph embedding using tensor factorization
    He, Peng
    Zhou, Gang
    Zhang, Mengli
    Wei, Jianghong
    Chen, Jing
    APPLIED INTELLIGENCE, 2023, 53 (08) : 8746 - 8760