The application of artificial intelligence to accelerate G protein-coupled receptor drug discovery

被引:19
作者
Nguyen, Anh T. N. [1 ]
Nguyen, Diep T. N. [2 ]
Koh, Huan Yee [1 ,3 ]
Toskov, Jason [4 ]
MacLean, William [4 ]
Xu, Andrew [4 ]
Zhang, Daokun [1 ]
Webb, Geoffrey I. [3 ]
May, Lauren T. [1 ]
Halls, Michelle L. [1 ]
机构
[1] Monash Univ, Monash Inst Pharmaceut Sci, Drug Discovery Biol Theme, 399 Royal Parade, Parkville, Vic 3052, Australia
[2] Vietnam Natl Univ, Fac Engn & Technol, Dept Informat Technol, Hanoi, Vietnam
[3] Monash Univ, Monash Data Futures Inst, Dept Data Sci & Artificial Intelligence, Clayton, Vic, Australia
[4] Monash Univ, Monash DeepNeuron, Clayton, Vic, Australia
基金
英国医学研究理事会;
关键词
artificial intelligence; deep learning; drug discovery; G protein-coupled receptor; machine learning; ALLOSTERIC MODULATORS; GPCR; PREDICTION; IDENTIFICATION; DOCKING; SELECTIVITY; DATABASE; MODEL;
D O I
10.1111/bph.16140
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
The application of artificial intelligence (AI) approaches to drug discovery for G protein-coupled receptors (GPCRs) is a rapidly expanding area. Artificial intelligence can be used at multiple stages during the drug discovery process, from aiding our understanding of the fundamental actions of GPCRs to the discovery of new ligand-GPCR interactions or the prediction of clinical responses. Here, we provide an overview of the concepts behind artificial intelligence, including the subfields of machine learning and deep learning. We summarise the published applications of artificial intelligence to different stages of the GPCR drug discovery process. Finally, we reflect on the benefits and limitations of artificial intelligence and share our vision for the exciting potential for further development of applications to aid GPCR drug discovery. In addition to making the drug discovery process "faster, smarter and cheaper," we anticipate that the application of artificial intelligence will create exciting new opportunities for GPCR drug discovery.
引用
收藏
页码:2371 / 2384
页数:14
相关论文
共 124 条
[1]   THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: G protein-coupled receptors [J].
Alexander, Stephen P. H. ;
Christopoulos, Arthur ;
Davenport, Anthony P. ;
Kelly, Eamonn ;
Mathie, Alistair ;
Peters, John A. ;
Veale, Emma L. ;
Armstrong, Jane F. ;
Faccenda, Elena ;
Harding, Simon D. ;
Pawson, Adam J. ;
Southan, Christopher ;
Davies, Jamie A. ;
Abbracchio, Maria Pia ;
Alexander, Wayne ;
Al-hosaini, Khaled ;
Baeck, Magnus ;
Barnes, Nicholas M. ;
Bathgate, Ross ;
Beaulieu, Jean-Martin ;
Bernstein, Kenneth E. ;
Bettler, Bernhard ;
Birdsall, Nigel J. M. ;
Blaho, Victoria ;
Boulay, Francois ;
Bousquet, Corinne ;
Braeuner-Osborne, Hans ;
Burnstock, Geoffrey ;
Calo, Girolamo ;
Castano, Justo P. ;
Catt, KevinJ ;
Ceruti, Stefania ;
Chazot, Paul ;
Chiang, Nan ;
Chini, Bice ;
Chun, Jerold ;
Cianciulli, Antonia ;
Civelli, Olivier ;
Clapp, Lucie H. ;
Couture, Rejean ;
Csaba, Zsolt ;
Dahlgren, Claes ;
Dent, Gordon ;
Singh, Khuraijam Dhanachandra ;
Douglas, Steven D. ;
Dournaud, Pascal ;
Eguchi, Satoru ;
Escher, Emanuel ;
Filardo, Edward J. ;
Fong, Tung .
BRITISH JOURNAL OF PHARMACOLOGY, 2021, 178 :S27-S156
[2]  
Ao C., 2020, IDENTIFYING G PROTEI, DOI [10.1109/ACCESS.2020.2983105, DOI 10.1109/ACCESS.2020.2983105]
[3]   Accurate prediction of protein structures and interactions using a three-track neural network [J].
Baek, Minkyung ;
DiMaio, Frank ;
Anishchenko, Ivan ;
Dauparas, Justas ;
Ovchinnikov, Sergey ;
Lee, Gyu Rie ;
Wang, Jue ;
Cong, Qian ;
Kinch, Lisa N. ;
Schaeffer, R. Dustin ;
Millan, Claudia ;
Park, Hahnbeom ;
Adams, Carson ;
Glassman, Caleb R. ;
DeGiovanni, Andy ;
Pereira, Jose H. ;
Rodrigues, Andria V. ;
van Dijk, Alberdina A. ;
Ebrecht, Ana C. ;
Opperman, Diederik J. ;
Sagmeister, Theo ;
Buhlheller, Christoph ;
Pavkov-Keller, Tea ;
Rathinaswamy, Manoj K. ;
Dalwadi, Udit ;
Yip, Calvin K. ;
Burke, John E. ;
Garcia, K. Christopher ;
Grishin, Nick V. ;
Adams, Paul D. ;
Read, Randy J. ;
Baker, David .
SCIENCE, 2021, 373 (6557) :871-+
[4]   Application advances of deep learning methods for de novo drug design and molecular dynamics simulation [J].
Bai, Qifeng ;
Liu, Shuo ;
Tian, Yanan ;
Xu, Tingyang ;
Banegas-Luna, Antonio Jesus ;
Perez-Sanchez, Horacio ;
Huang, Junzhou ;
Liu, Huanxiang ;
Yao, Xiaojun .
WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE, 2022, 12 (03)
[5]   Structure-Activity Analysis of Biased Agonism at the Human Adenosine A3 Receptor [J].
Baltos, Jo-Anne ;
Paoletta, Silvia ;
Nguyen, Anh T. N. ;
Gregory, Karen J. ;
Tosh, Dilip K. ;
Christopoulos, Arthur ;
Jacobson, Kenneth A. ;
May, Lauren T. .
MOLECULAR PHARMACOLOGY, 2016, 90 (01) :12-22
[6]   GPCR-PEnDB: a database of protein sequences and derived features to facilitate prediction and classification of G protein-coupled receptors [J].
Begum, Khodeza ;
Mohl, Jonathon E. ;
Ayivor, Fredrick ;
Perez, Eder E. ;
Leung, Ming-Ying .
DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION, 2020,
[7]   DYNAMIC PROGRAMMING [J].
BELLMAN, R .
SCIENCE, 1966, 153 (3731) :34-&
[8]   Machine Learning to Identify Flexibility Signatures of Class A GPCR Inhibition [J].
Bemister-Buffington, Joseph ;
Wolf, Alex J. ;
Raschka, Sebastian ;
Kuhn, Leslie A. .
BIOMOLECULES, 2020, 10 (03)
[9]   Exploring use of unsupervised clustering to associate signaling profiles of GPCR ligands to clinical response [J].
Benredjem, Besma ;
Gallion, Jonathan ;
Pelletier, Dennis ;
Dallaire, Paul ;
Charbonneau, Johanie ;
Cawkill, Darren ;
Nagi, Karim ;
Gosink, Mark ;
Lukasheva, Viktoryia ;
Jenkinson, Stephen ;
Ren, Yong ;
Somps, Christopher ;
Murat, Brigitte ;
Van Der Westhuizen, Emma ;
Le Gouill, Christian ;
Lichtarge, Olivier ;
Schmidt, Anne ;
Bouvier, Michel ;
Pineyro, Graciela .
NATURE COMMUNICATIONS, 2019, 10 (1)
[10]   Artificial Intelligent Deep Learning Molecular Generative Modeling of Scaffold-Focused and Cannabinoid CB2 Target-Specific Small-Molecule Sublibraries [J].
Bian, Yuemin ;
Xie, Xiang-Qun .
CELLS, 2022, 11 (05)