NAD+ metabolism-based immunoregulation and therapeutic potential

被引:12
作者
Fang, Jiankai [1 ]
Chen, Wangwang [2 ]
Hou, Pengbo [1 ,3 ]
Liu, Zhanhong [1 ,3 ]
Zuo, Muqiu [1 ]
Liu, Shisong [1 ]
Feng, Chao [1 ,3 ]
Han, Yuyi [1 ,3 ]
Li, Peishan [1 ]
Shi, Yufang [1 ,4 ]
Shao, Changshun [1 ]
机构
[1] Soochow Univ, Suzhou Med Coll, State Key Lab Radiat Med & Protect, Inst Translat Med,Affiliated Hosp 1, Suzhou, Jiangsu, Peoples R China
[2] Soochow Univ, Lab Anim Ctr, Suzhou Med Coll, Suzhou, Jiangsu, Peoples R China
[3] Univ Roma Tor Vergata, Dept Expt Med & Biochem Sci, Rome, Italy
[4] Chinese Acad Sci, Shanghai Inst Nutr & Hlth, Shanghai Inst Biol Sci, Shanghai, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Nicotinamide adenine dinucleotide (NAD(+)); Immunoregulation; Metabolic homeostasis; Plasticity; Disease therapy; NICOTINAMIDE ADENINE-DINUCLEOTIDE; T-CELL APOPTOSIS; POLY(ADP-RIBOSE) POLYMERASES; MITOCHONDRIAL DYSFUNCTION; EXTRACELLULAR NAD(+); BOOSTING MOLECULES; PROTEIN SIR2; IN-VIVO; SIRTUINS; CD38;
D O I
10.1186/s13578-023-01031-5
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Nicotinamide adenine dinucleotide (NAD(+)) is a critical metabolite that acts as a cofactor in energy metabolism, and serves as a cosubstrate for non-redox NAD(+)-dependent enzymes, including sirtuins, CD38 and poly(ADP-ribose) polymerases. NAD(+) metabolism can regulate functionality attributes of innate and adaptive immune cells and contribute to inflammatory responses. Thus, the manipulation of NAD(+) bioavailability can reshape the courses of immunological diseases. Here, we review the basics of NAD(+) biochemistry and its roles in the immune response, and discuss current challenges and the future translational potential of NAD(+) research in the development of therapeutics for inflammatory diseases, such as COVID-19.
引用
收藏
页数:15
相关论文
共 167 条
  • [21] Faulty engines in T cells accelerate ageing and disease
    Bordon, Yvonne
    [J]. NATURE REVIEWS IMMUNOLOGY, 2020, 20 (07) : 406 - +
  • [22] Structural and Mechanistic Regulation of the Pro-degenerative NAD Hydrolase SARM1
    Bratkowski, Matthew
    Xie, Tian
    Thayer, Desiree A.
    Lad, Shradha
    Mathur, Prakhyat
    Yang, Yu-San
    Danko, Gregory
    Burdett, Thomas C.
    Danao, Jean
    Cantor, Aaron
    Kozak, Jennifer A.
    Brown, Sean P.
    Bai, Xiaochen
    Sambashivan, Shilpa
    [J]. CELL REPORTS, 2020, 32 (05):
  • [23] Catastrophic NAD+ Depletion in Activated T Lymphocytes through Nampt Inhibition Reduces Demyelination and Disability in EAE
    Bruzzone, Santina
    Fruscione, Floriana
    Morando, Sara
    Ferrando, Tiziana
    Poggi, Alessandro
    Garuti, Anna
    D'Urso, Agustina
    Selmo, Martina
    Benvenuto, Federica
    Cea, Michele
    Zoppoli, Gabriele
    Moran, Eva
    Soncini, Debora
    Ballestrero, Alberto
    Sordat, Bernard
    Patrone, Franco
    Mostoslavsky, Raul
    Uccelli, Antonio
    Nencioni, Alessio
    [J]. PLOS ONE, 2009, 4 (11):
  • [24] Type I interferons affect the metabolic fitness of CD8+ T cells from patients with systemic lupus erythematosus
    Buang, Norzawani
    Tapeng, Lunnathaya
    Gray, Victor
    Sardini, Alessandro
    Whilding, Chad
    Lightstone, Liz
    Cairns, Thomas D.
    Pickering, Matthew C.
    Behmoaras, Jacques
    Ling, Guang Sheng
    Botto, Marina
    [J]. NATURE COMMUNICATIONS, 2021, 12 (01)
  • [25] Metabolic Instruction of Immunity
    Buck, Michael D.
    Sowell, Ryan T.
    Kaech, Susan M.
    Pearce, Erika L.
    [J]. CELL, 2017, 169 (04) : 570 - 586
  • [26] Kinetic competence of the cADP-ribose-CD38 complex as an intermediate in the CD38/NAD+ glycohydrolase-catalysed reactions:: implication for CD38 signalling
    Cakir-Kiefer, I
    Muller-Steffner, H
    Oppenheimer, N
    Schuber, F
    [J]. BIOCHEMICAL JOURNAL, 2001, 358 : 399 - 406
  • [27] CD38 Dictates Age-Related NAD Decline and Mitochondrial Dysfunction through an SIRT3-Dependent Mechanism
    Camacho-Pereira, Juliana
    Tarrago, Mariana G.
    Chini, Claudia C. S.
    Nin, Veronica
    Escande, Carlos
    Warner, Gina M.
    Puranik, Amrutesh S.
    Schoon, Renee A.
    Reid, Joel M.
    Galina, Antonio
    Chini, Eduardo N.
    [J]. CELL METABOLISM, 2016, 23 (06) : 1127 - 1139
  • [28] Location, Location, Location: Compartmentalization of NAD+ Synthesis and Functions in Mammalian Cells
    Cambronne, Xiaolu A.
    Kraus, W. Lee
    [J]. TRENDS IN BIOCHEMICAL SCIENCES, 2020, 45 (10) : 858 - 873
  • [29] Inflammatory macrophage dependence on NAD+ salvage is a consequence of reactive oxygen species-mediated DNA damage
    Cameron, Alanna M.
    Castoldi, Angela
    Sanin, David E.
    Flachsmann, Lea J.
    Field, Cameron S.
    Puleston, Daniel J.
    Kyle, Ryan L.
    Patterson, Annette E.
    Haessler, Fabian
    Buescher, Joerg M.
    Kelly, Beth
    Pearce, Erika L.
    Pearce, Edward J.
    [J]. NATURE IMMUNOLOGY, 2019, 20 (04) : 420 - +
  • [30] Interdependence of AMPK and SIRT1 for Metabolic Adaptation to Fasting and Exercise in Skeletal Muscle
    Canto, Carles
    Jiang, Lake Q.
    Deshmukh, Atul S.
    Mataki, Chikage
    Coste, Agnes
    Lagouge, Marie
    Zierath, Juleen R.
    Auwerx, Johan
    [J]. CELL METABOLISM, 2010, 11 (03) : 213 - 219