A second order fractional step hybrid numerical algorithm for time delayed singularly perturbed 2D convection-diffusion problems

被引:14
作者
Priyadarshana, S. [1 ]
Mohapatra, J. [1 ]
Pattanaik, S. R. [1 ]
机构
[1] Natl Inst Technol, Dept Math, Rourkela 769008, Orissa, India
关键词
Higher-dimensional convection-diffusion; problem; Time delay; Singular perturbation; Peaceman-Rachford scheme; Crank-Nicholson scheme; Hybrid scheme; SCHEME; MESH;
D O I
10.1016/j.apnum.2023.04.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The objective of this work is to provide an efficient and higher-order numerical scheme for the solution of a singularly perturbed 2D time-delayed parabolic convection-diffusion problem. Each time step is split into two partial time steps by using the Peaceman-Rachford splitting algorithm. The splitting is done over the idea of the Crank-Nicholson scheme. The hybrid scheme is a combination of the central difference scheme in the layer region and the mid-point upwind scheme in the outer region defined on a Shishkin mesh for the discretization in the spatial direction. This makes the order of convergence to two (up to a logarithmic factor) in space. Again, the presence of the logarithmic effect is rectified by the use of the Bakhvalov-Shishkin mesh. The proposed method is proved to be parameter uniform and also it attains second-order spatial accuracy in the discrete supremum norm. Numerical tests validate the efficacy of the proposed scheme.(c) 2023 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:107 / 129
页数:23
相关论文
共 34 条
[1]  
[Anonymous], 2012, Fitted Numerical Methods for Singular Perturbation Problems
[2]   A novel two-step streamline-diffusion FEM for singularly perturbed 2D parabolic PDEs [J].
Avijit, D. ;
Natesan, S. .
APPLIED NUMERICAL MATHEMATICS, 2022, 172 :259-278
[3]   SPATIAL STRUCTURES AND PERIODIC TRAVELING WAVES IN AN INTEGRODIFFERENTIAL REACTION-DIFFUSION POPULATION-MODEL [J].
BRITTON, NF .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1990, 50 (06) :1663-1688
[4]   A high order uniformly convergent alternating direction scheme for time dependent reaction-diffusion singularly perturbed problems [J].
Bujanda, B. ;
Clavero, C. ;
Gracia, J. L. ;
Jorge, J. C. .
NUMERISCHE MATHEMATIK, 2007, 107 (01) :1-25
[5]   A fractional step method for 2D parabolic convection-diffusion singularly perturbed problems: uniform convergence and order reduction [J].
Clavero, C. ;
Jorge, J. C. .
NUMERICAL ALGORITHMS, 2017, 75 (03) :809-826
[6]   A simpler analysis of a hybrid numerical method for time-dependent convection-diffusion problems [J].
Clavero, C. ;
Gracia, J. L. ;
Stynes, M. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 235 (17) :5240-5248
[7]   A fractional step method on a special mesh for the resolution of multidimensional evolutionary convection-diffusion problems [J].
Clavero, C ;
Jorge, JC ;
Lisbona, F ;
Shishkin, GI .
APPLIED NUMERICAL MATHEMATICS, 1998, 27 (03) :211-231
[8]   A uniformly convergent alternating direction HODIE finite difference scheme for 2D time-dependent convection-diffusion problems [J].
Clavero, C ;
Gracia, JL ;
Jorge, JC .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2006, 26 (01) :155-172
[9]  
Das Abhishek, 2018, International Journal of Mathematical Modelling and Numerical Optimisation, V8, P305
[10]  
Das A., 2018, INT J APPL COMPUT MA, V4, P1